首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jin Y  Kim SJ  Kim J  Worley PF  Linden DJ 《Neuron》2007,55(2):277-287
Glutamate produces both fast excitation through activation of ionotropic receptors and slower actions through metabotropic receptors (mGluRs). To date, ionotropic but not metabotropic neurotransmission has been shown to undergo long-term synaptic potentiation and depression. Burst stimulation of parallel fibers releases glutamate, which activates perisynaptic mGluR1 in the dendritic spines of cerebellar Purkinje cells. Here, we show that the mGluR1-dependent slow EPSC and its coincident Ca transient were selectively and persistently depressed by repeated climbing fiber-evoked depolarization of Purkinje cells in brain slices. LTD(mGluR1) was also observed when slow synaptic current was evoked by exogenous application of a group I mGluR agonist, implying a postsynaptic expression mechanism. Ca imaging further revealed that LTD(mGluR1) was expressed as coincident attenuation of both limbs of mGluR1 signaling: the slow EPSC and PLC/IP3-mediated dendritic Ca mobilization. Thus, different patterns of neural activity can evoke LTD of either fast ionotropic or slow mGluR1-mediated synaptic signaling.  相似文献   

2.
Long-term depression at parallel fiber-Purkinje cell synapses (PF-PC LTD) has been proposed to be required for cerebellar motor learning. To date, tests of this hypothesis have sought to interfere with receptors (mGluR1) and enzymes (PKC, PKG, or αCamKII) necessary for induction of PF-PC LTD and thereby determine if cerebellar motor learning is impaired. Here, we tested three mutant mice that target the expression of PF-PC LTD by blocking internalization of AMPA receptors. Using three different cerebellar coordination tasks (adaptation of the vestibulo-ocular reflex, eyeblink conditioning, and locomotion learning on the Erasmus Ladder), we show that there is no motor learning impairment in these mutant mice that lack PF-PC LTD. These findings demonstrate that PF-PC LTD is not essential for cerebellar motor learning.  相似文献   

3.
Absence of functional FMRP causes Fragile X syndrome. Abnormalities in synaptic processes in the cerebral cortex and hippocampus contribute to cognitive deficits in Fragile X patients. So far, the potential roles of cerebellar deficits have not been investigated. Here, we demonstrate that both global and Purkinje cell-specific knockouts of Fmr1 show deficits in classical delay eye-blink conditioning in that the percentage of conditioned responses as well as their peak amplitude and peak velocity are reduced. Purkinje cells of these mice show elongated spines and enhanced LTD induction at the parallel fiber synapses that innervate these spines. Moreover, Fragile X patients display the same cerebellar deficits in eye-blink conditioning as the mutant mice. These data indicate that a lack of FMRP leads to cerebellar deficits at both the cellular and behavioral levels and raise the possibility that cerebellar dysfunctions can contribute to motor learning deficits in Fragile X patients.  相似文献   

4.
Cerebellar function in consolidation of a motor memory   总被引:9,自引:0,他引:9  
Attwell PJ  Cooke SF  Yeo CH 《Neuron》2002,34(6):1011-1020
Several forms of motor learning, including classical conditioning of the eyeblink and nictitating membrane response (NMR), are dependent upon the cerebellum, but it is not known how motor memories are stored within the cerebellar circuitry. Localized infusions of the GABA(A) agonist muscimol were used to target putative consolidation processes by producing reversible inactivations after NMR conditioning sessions. Posttraining inactivations of eyeblink control regions in cerebellar cortical lobule HVI completely prevented conditioning from developing over four sessions. In contrast, similar inactivations of eyeblink control regions in the cerebellar nuclei allowed conditioning to develop normally. These findings provide evidence that there are critical posttraining memory consolidation processes for eyeblink conditioning mediated by the cerebellar cortex.  相似文献   

5.
Cerebellar long-term depression (LTD) at the parallel fiber-Purkinje cell synapses has been proposed to be a neural substrate for classical eyeblink conditioning. Mutant mice lacking the glutamate receptor subunit 2 (GluR2), in which the cerebellar LTD is disrupted, exhibited a severe impairment in the delay eyeblink conditioning with a temporal overlap of CS and US. However, they learned normally trace and delay conditioning without CS-US overlap, suggesting a learning mechanism which does not require the cerebellar LTD.In the present study, we tested possible involvement of the hippocampus in this cerebellar LTD-independent learning. We examined effects of scopolamine and hippocampal lesion on the delay conditioning without CS-US overlap. TheGluR2 mutant mice that received scopolamine or aspiration of the dorsalhippocampus together with its overlying cortex exhibited a severe impairment in learning, while the control mutant mice that received saline or aspiration of the overlying cortex learned normally. In contrast, wild-type mice that received either treatment learned as normally as the control wild-type mice. These results suggest that the hippocampus is essential in the cerebellar LTD-independent learning in the GluR2 mutant mice, indicating a newrole of hippocampus in the paradigm with a short trace interval.  相似文献   

6.
Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABAA agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage.  相似文献   

7.
Stimulation of type I metabotropic glutamate receptors (mGluR1/5) in several neuronal types induces slow excitatory responses through activation of transient receptor potential canonical (TRPC) channels. GABAergic cerebellar molecular layer interneurons (MLIs) modulate firing patterns of Purkinje cells (PCs), which play a key role in cerebellar information processing. MLIs express mGluR1, and activation of mGluR1 induces an inward current, but its precise intracellular signaling pathways are unknown. We found that mGluR1 activation facilitated spontaneous firing of mouse cerebellar MLIs through an inward current mediated by TRPC1 channels. This mGluR1-mediated inward current depends on both G protein-dependent and -independent pathways. The nonselective protein tyrosine kinase inhibitors genistein and AG490 as well as the selective extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors PD98059 and SL327 suppressed the mGluR1-mediated current responses. Following G protein blockade, the residual mGluR1-mediated inward current was significantly reduced by the selective Src tyrosine kinase inhibitor PP2. In contrast to cerebellar PCs, GABAB receptor activation in MLIs did not alter the mGluR1-mediated inward current, suggesting that there is no cross-talk between mGluR1 and GABAB receptors in MLIs. Thus, activation of mGluR1 facilitates firing of MLIs through the TRPC1-mediated inward current, which depends on not only G protein-dependent but also Src–ERK1/2-dependent signaling pathways, and consequently depresses the excitability of cerebellar PCs.  相似文献   

8.
Activation of the type-1 metabotropic glutamate receptor (mGluR1) signaling pathway in the cerebellum involves activation of phospholipase C (PLC) and protein kinase C (PKC) for the induction of cerebellar long term depression (LTD). The PLC and PKC isoforms that are involved in LTD remain unclear, however. One previous study found no change in LTD in PKCgamma-deficient mice, thus, in the present study, we examined cerebellar LTD in PLCbeta4-deficient mice. Immunohistochemical and Western blot analyses of cerebellum from wild-type mice revealed that PLCbeta1 was expressed weakly and uniformly, PLCbeta2 was not detected, PLCbeta3 was expressed predominantly in caudal cerebellum (lobes 7-10), and PLCbeta4 was expressed uniformly throughout. In PLCbeta4-deficient mice, expression of total PLCbeta, the mGluR1-mediated Ca(2+) response, and LTD induction were greatly reduced in rostral cerebellum (lobes 1-6). Furthermore, we used immunohistochemistry to localize PKCalpha, -betaI, -betaII, and -gamma in mouse cerebellar Purkinje cells during LTD induction. Both PKCalpha and PKCbetaI were found to be translocated to the plasmamembrane under these conditions. Taken together, these results suggest that mGluR1-mediated activation of PLCbeta4 in rostral cerebellar Purkinje cells induced LTD via PKCalpha and/or PKCbetaI.  相似文献   

9.
Neuronal dendrites, together with dendritic spines, exhibit enormously diverse structure. Selective targeting and local translation of mRNAs in dendritic spines have been implicated in synapse remodeling or synaptic plasticity. The mechanism of mRNA transport to the postsynaptic site is a fundamental question in local dendritic translation. TLS (translocated in liposarcoma), previously identified as a component of hnRNP complexes, unexpectedly showed somatodendritic localization in mature hippocampal pyramidal neurons. In the present study, TLS was translocated to dendrites and was recruited to dendrites not only via microtubules but also via actin filaments. In mature hippocampal pyramidal neurons, TLS accumulated in the spines at excitatory postsynapses upon mGluR5 activation, which was accompanied by an increased RNA content in dendrites. Consistent with the in vitro studies, TLS-null hippocampal pyramidal neurons exhibited abnormal spine morphology and lower spine density. Our results indicate that TLS participates in mRNA sorting to the dendritic spines induced by mGluR5 activation and regulates spine morphology to stabilize the synaptic structure.  相似文献   

10.
Synaptic pruning is a physiological event that eliminates excessive or inappropriate synapses to form proper synaptic connections during development of neurons. Appropriate synaptic pruning is required for normal neural development. However, the mechanism of synaptic pruning is not fully understood. Strength of synaptic activity under competitive circumstances is thought to act as a selective force for synaptic pruning. Long-term depression (LTD) is a synaptic plasticity showing persistent decreased synaptic efficacy, which is accompanied by morphological changes of dendritic spines including transient retraction. Repetitive induction of LTD has been shown to cause persistent loss of synapses in mature neurons. Here, we show that multiple, but not single, induction of LTD caused a persistent reduction in the number of dendritic synapses in cultured rat developing hippocampal neurons. When LTD was induced in 14 days in vitro cultures by application of (RS)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist, and repeated three times with a one day interval, there was a significant decrease in the number of dendritic synapses. This effect continued up to at least two weeks after the triple LTD induction. The persistent reduction in synapse number occurred in the proximal dendrites, but not the distal dendrites, and was prevented by simultaneous application of the group I/II mGluR antagonist (S)-a-methyl-4-carboxyphenylglycine (MCPG). In conclusion, we found that repetitive LTD induction in developing neurons elicits synaptic pruning and contributes to activity-dependent regulation of synapse number in rat hippocampal neurons.  相似文献   

11.
Albino rabbits were subjected to Pavlovian (classical) conditioning and extinction of concomitant heart rate and eyeblink responses. Sixty minutes before each of three extinction sessions animals were treated with 5 or 20 μg/kg of deamino-dicarba-arginine-8-vasopressin or saline. Vasopressin treatment delayed extinction of bradycardiac conditioned responses but did not affect concomitant eyeblink conditioned responses. It was concluded that classically conditioned autonomic responses may be useful tools for studying the effects of peptides on learning.  相似文献   

12.
Mice lacking the prion protein (PrPC) gene (Prnp), Ngsk Prnp 0/0 mice, show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrPC-like protein (PrPLP/Dpl). Because PrPC is highly expressed in cerebellar neurons (including PCs and granule cells), it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrPC and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp 0/0 mice in adulthood (16, 40, and 60 weeks of age). The aims of the present study were two-fold: (1) to examine the role of PrPC and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2) to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp 0/0 mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp 0/0 mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs), although the CR timing was altered. The same result was observed in another line of PrPc-deficient mice, ZrchI PrnP 0/0 mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp 0/0 mice. Furthermore, Ngsk Prnp 0/0 mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp 0/0 mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning.  相似文献   

13.
Patch clamp recordings of neurons in the adult rat deep cerebellar nuclei have been limited by the availability of viable brain slices. Using a new slicing technique, this study was designed to explore the maturation of membrane properties of neurons in the deep cerebellar nuclei (DCN)—an area involved in rat eyeblink conditioning. Compared to whole‐cell current–clamp recordings in DCN in rat pups at postnatal day 16 (P16) to P21, recordings from weanling rats at P22–P40 revealed a number of significant changes including an increase in the amplitude of the afterhyperpolarization (AHP)—an index of membrane excitability which has been shown to be important for eyeblink conditioning—a prolonged interval between the first and second evoked action potential, and an increase in AHP amplitude for hyperpolarization‐induced rebound spikes. This is the first report of developmental changes in membrane properties of DCN which may contribute to the ontogeny of eyeblink conditioning in the rat. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1268–1276, 2014  相似文献   

14.
Neural mechanisms of classical conditioning in mammals   总被引:10,自引:0,他引:10  
Evidence supports the view that 'memory traces' are formed in the hippocampus and in the cerebellum in classical conditioning of discrete behavioural responses. In the hippocampus learning results in long-lasting increases in excitability of pyramidal neurons that resemble the phenomenon of long-term potentiation. Although it plays a role in certain aspects of conditioning, the hippocampus is not necessary for learning and memory of the basic conditioned responses. The cerebellum and its associated brain-stem circuitry, on the other hand, does appear to be essential (necessary and sufficient) for learning and memory of the conditioned response. Evidence to date supports the view that mossy fibre convey conditioned stimulus information and that climbing fibres conveys the critical 'reinforcement' information to the cerebellum and that 'memory traces' appear to be formed in cerebellar cortex and interpositus nucleus.  相似文献   

15.
Hansel C  Linden DJ 《Neuron》2000,26(2):473-482
In classic Marr-Albus-Ito models of cerebellar function, coactivation of the climbing fiber (CF) synapse, which provides massive, invariant excitation of Purkinje neurons (coding the unconditioned stimulus), together with a graded parallel fiber synaptic array (coding the conditioned stimulus) leads to long-term depression (LTD) of parallel fiber-Purkinje neuron synapses, underlying production of a conditioned response. Here, we show that the supposedly invariant CF synapse can also express LTD. Brief 5 Hz stimulation of the CF resulted in a sustained depression of CF EPSCs that did not spread to neighboring parallel fiber synapses. Like parallel fiber LTD, CF LTD required postsynaptic Ca2+ elevation, activation of group 1 mGluRs, and activation of PKC. CF LTD is potentially relevant for models of cerebellar motor control and learning and the developmental conversion from multiple to single CF innervation of Purkinje neurons.  相似文献   

16.
Leitges M  Kovac J  Plomann M  Linden DJ 《Neuron》2004,44(4):585-594
Induction of cerebellar long-term depression (LTD) requires a postsynaptic cascade involving activation of mGluR1 and protein kinase C (PKC). Our understanding of this process has been limited by the fact that PKC is a large family of molecules, many isoforms of which are expressed in the relevant postsynaptic compartment, the cerebellar Purkinje cell. Here, we report that LTD is absent in Purkinje cells in which the alpha isoform of PKC has been reduced by targeted RNA interference or in cells derived from PKCalpha null mice. In both of these cases, LTD could be rescued by expression of PKCalpha but not other PKC isoforms. The special role of PKCalpha in cerebellar LTD is likely to derive from its unique PDZ ligand (QSAV). When this motif is mutated, PKCalpha no longer supports LTD. Conversely, when this PDZ ligand is inserted in a nonpermissive isoform, PKCgamma, it confers the capacity for LTD induction.  相似文献   

17.
This work attempts to evaluate the cognitive aspects of the acclimatization ability of mice submitted to simulated altitude. Critical altitudes were detected by evaluating open field activity, combined or not with object recognition tasks, at different acute simulated altitudes. Results showed impaired cognitive abilities at approximately 3,733 m and above. To evaluate acclimatization capabilities, mice submitted to hypobaric hypoxia at approximately 5,000 m for 1 wk were tested for learning and memory performances with classical eyeblink conditioning at the same altitude or at land altitude. Results showed total acclimatization in mice conditioned at approximately 5,000 m but no improved performance in those conditioned at land altitudes compared with controls. Selected brain sites of conditioned animals were analyzed by immunohistochemistry to detect expression of the protein product of the protooncogene c-fos (Fos) in relation to both motor learning processes and hypobaric conditions. In the nucleus of the solitary tract, a higher expression of Fos was found in the acute hypobaric conditioned animals than in control conditioned and nonconditioned animals. Similar patterns between groups were found in the other brain areas, mainly in the piriform cortex and area 1 of the cingulate cortex and in the hippocampus. Differences between hemispheres were detected only in acute hypobaric animals. The present results show that acclimatization to high altitude prevents the impairment of classical eyeblink conditioning evoked by hypobaric hypoxic conditions but does not improve this task when acquired under land conditions, although it could diminish the activation requirements for its performance.  相似文献   

18.
Mice with spontaneous and induced mutations causing cerebellar phenotypes have provided key insights into how motor-related memories are stored in cerebellar circuits. Delayed eyeblink conditioning is a form of associative motor learning that depends on the cerebellum. However, neurochemical investigation of the underlying mechanisms has been hampered by the long training period (usually several days) required to establish conditioning. Here, we report a new rapid-training protocol that reliably induced delayed eyeblink conditioning within a single day. The associative memory formation depended on the expression of the δ2 glutamate receptor (GluD2) in cerebellar Purkinje cells. It lasted for several weeks, but could be erased by extinction sessions in a single day. In addition, using the rapid protocol, we found that eyeblink conditioning could be induced in juvenile mice at postnatal day 21, and that the Sindbis-virus-mediated expression of GluD2 could rescue the impaired eyeblink conditioning in GluD2-null mice in vivo.  相似文献   

19.
The cerebellum in transgenic mice expressing pseudorabies virus immediate-early protein IE180 (TgIE96) was substantially diminished in size, and its histoarchitecture was severely disorganized, resulting in severe ataxia. TgIE96 mice can therefore be used as an experimental model to study the involvement of cerebellar circuits in different learning tasks. The performance of three-month-old TgIE96 mice was studied in various behavioral tests, including associative learning (classical eyeblink conditioning), object recognition, spatial orientation (water maze), startle response and prepulse inhibition, and passive avoidance, and compared with that of wild-type mice. Wild-type and TgIE96 mice presented similar reflexively evoked eyeblinks, and acquired classical conditioned eyelid responses with similar learning curves for both trace and delay conditioning paradigms. The two groups of mice also had similar performances during the object recognition test. However, they showed significant differences for the other three tests included in this study. Although both groups of animals were capable of swimming, TgIE96 mice failed to learn the water maze task during the allowed time. The startle response to a severe tone was similar in both control and TgIE96 mice, but the latter were unable to produce a significant prepulse inhibition. TgIE96 mice also presented evident deficits for the proper accomplishment of a passive avoidance test. These results suggest that the cerebellum is not indispensable for the performance of classical eyeblink conditioning and for object recognition tasks, but seems to be necessary for the proper performance of water maze, prepulse inhibition, and passive avoidance tests.  相似文献   

20.
It is becoming apparent that the hormone leptin plays an important role in modulating hippocampal function. Indeed, leptin enhances NMDA receptor activation and promotes hippocampal long-term potentiation (LTP). Furthermore, obese rodents with dysfunctional leptin receptors display impairments in hippocampal synaptic plasticity. Here we demonstrate that under conditions of enhanced excitability (evoked in Mg2+-free medium or following blockade of GABA(A) receptors), leptin induces a novel form of long-term depression (LTD) in area CA1 of the hippocampus. Leptin-induced LTD was markedly attenuated in the presence of D-(-)-2-Amino-5-Phosphonopentanoic acid (D-AP5), suggesting that it is dependent on the synaptic activation of NMDA receptors. In addition, low-frequency stimulus-evoked LTD occluded the effects of leptin. In contrast, metabotropic glutamate receptors (mGluRs) did not contribute to leptin-induced LTD as mGluR antagonists failed to either prevent or reverse this process. The signalling mechanisms underlying leptin-induced LTD were independent of the Ras-Raf-mitogen-activated protein kinase signalling pathway, but were markedly enhanced following inhibition of either phosphoinositide 3-kinase or protein phosphatases 1 and 2A. These data indicate that under conditions of enhanced excitability, leptin induces a novel form of homosynaptic LTD, which further underscores the proposed key role for this hormone in modulating NMDA receptor-dependent hippocampal synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号