首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation is characterized by the evolution of reproductive isolation between two groups of organisms. Understanding the process of speciation requires the quantification of barriers to reproductive isolation, dissection of the genetic mechanisms that contribute to those barriers and determination of the forces driving the evolution of those barriers. Through a comprehensive analysis involving 19 pairs of plant taxa, we assessed the strength and patterns of asymmetry of multiple prezygotic and postzygotic reproductive isolating barriers. We then reviewed contemporary knowledge of the genetic architecture of reproductive isolation and the relative role of chromosomal and genic factors in intrinsic postzygotic isolation. On average, we found that prezygotic isolation is approximately twice as strong as postzygotic isolation, and that postmating barriers are approximately three times more asymmetrical in their action than premating barriers. Barriers involve a variable number of loci, and chromosomal rearrangements may have a limited direct role in reproductive isolation in plants. Future research should aim to understand the relationship between particular genetic loci and the magnitude of their effect on reproductive isolation in nature, the geographical scale at which plant speciation occurs, and the role of different evolutionary forces in the speciation process.  相似文献   

2.
Patterns of reproductive isolation in Mediterranean deceptive orchids   总被引:2,自引:0,他引:2  
The evolution of reproductive isolation is of central interest in evolutionary biology. In plants, this is typically achieved by a combination of pre- and postpollination mechanisms that prevent, or limit, the amount of interspecific gene flow. Here, we investigated and compared two ecologically defined groups of Mediterranean orchids that differ in pollination biology and pollinator specificity: sexually deceptive orchids versus food-deceptive orchids. We used experimental crosses to assess the strength of postmating prezygotic, and postzygotic reproductive isolation, and a phylogenetic framework to determine their relative rates of evolution. We found quantitative and qualitative differences between the two groups. Food-deceptive orchids have weak premating isolation but strong postmating isolation, whereas the converse situation characterizes sexually deceptive orchids. Only postzygotic reproductive isolation among food-deceptive orchids was found to evolve in a clock-like manner. Comparison of evolutionary rates, within a common interval of genetic distance, showed that the contribution of postmating barriers was more relevant in the food-deceptive species than in the sexually deceptive species. Asymmetry in prezygotic isolation was found among food-deceptive species. Our results indicate that postmating barriers are most important for reproductive isolation in food-deceptive orchids, whereas premating barriers are most important in sexually deceptive orchids. The different rate of evolution of reproductive isolation and the relative strength of pre- and postmating barriers may have implication for speciation processes in the two orchid groups.  相似文献   

3.
One of the longest debates in biology has been over the relative importance of different isolating barriers in speciation. However, for most species, there are few data evaluating their relative contributions and we can only speculate on the general roles of pre- and postzygotic isolation. Here, we quantify the absolute and cumulative contribution of 19 potential reproductive barriers between two sympatric damselfly sister species, Ischnura elegans and I. graellsii, including both premating (habitat, temporal, sexual and mechanical isolation) and postmating barriers (prezygotic: sperm insemination success and removal rate, oviposition success, fertility, fecundity; postzygotic: hybrid viability, hybrid sterility and hybrid breakdown). In sympatry, total reproductive isolation between I. elegans females and I. graellsii males was 95.2%, owing mostly to a premating mechanical incompatibility (93.4%), whereas other barriers were of little importance. Isolation between I. graellsii females and I. elegans males was also nearly complete (95.8%), which was caused by the cumulative action of multiple prezygotic (n= 4, 75.4%) and postzygotic postmating barriers (n= 5, 7.4%). Our results suggest that premating barriers are key factors in preventing gene flow between species, and that the relative strengths of premating barriers is highly asymmetrical between the reciprocal crosses.  相似文献   

4.
We evaluate postmating barriers to hybridization between an exotic eucalypt and a group of native congeners on the island of Tasmania. We aimed to better understand the basis of reproductive isolation between the species, glean insights into the evolution of isolating mechanisms, and inform genetic risk management. Compatibility between the exotic plantation species Eucalyptus nitens (pollen parent) and 18 native Tasmanian taxa was assayed using experimental crossing for 17 taxa (13,458 flowers pollinated to produce 1058 female × male cross combinations), and previous data for one species. Compatibility was assessed in terms of F1 hybrid production, as well as F1 hybrid survival and growth after 5 years. This data was combined with measurements of style length, and genetic distance from E. nitens to each maternal species, in order to determine the importance of a sequence of prezygotic and postzygotic barriers. We found that the early-acting barrier of style length (prezygotic) had the strongest isolating effect, while later-acting (postzygotic) barriers, affecting early-age growth and survival, contributed little to reproductive isolation. Style length alone explained 46 % of the variation in hybridization rate. Conversely, there was no significant relationship between genetic distance and prezygotic or postzygotic compatibility in these closely related species. This pattern is consistent with selection driving the rapid evolution of prezygotic barriers, while drift-like-processes lead to the more gradual evolution of intrinsic barriers. Although other premating and postmating barriers clearly contribute, our results highlight the important role of early-acting postmating barriers in preventing gene flow from exotic E. nitens plantations.  相似文献   

5.
Studies that simultaneously estimate levels of species divergence in genetics, reproductive and ecological traits, and pre‐ and postzygotic isolation are relatively rare. Here we compare levels of divergence in three allopatric sister species of field crickets. We compare divergence in both nuclear and mitochondrial DNA, male song, female ovipositor length, levels of pre‐ and postzygotic isolation, and male versus female contributions to prezygotic isolation. Taken together, our data show the accumulation of a multitude of potential reproductive isolating barriers if secondary contact were to become established. Furthermore, ecological and behavioural prezygotic isolation appear significantly more advanced than postzygotic isolation, with prezygotic isolation due to female behaviour exceeding that due to male behaviour.  相似文献   

6.
Studies of prezygotic and postzygotic isolation in Drosophila have shown in general that species in sympatry tend to evolve prezygotic barriers earlier than do species in allopatry. However, postzygotic barriers tend to evolve at the same evolutionary rate in both sympatric and allopatric species. In contrast to these observations, the grasshoppers Chorthippus parallelus parallelus and C. p. erythropus show complete hybrid male sterility but only limited prezygotic isolation after an estimated 0.5 millions years of divergence. Like their congeners, C. brunneus and C. jacobsi form a hybrid zone where their ranges meet in northern Spain. However, the hybrid zone is mosaic and bimodal and, in contrast to the high levels of postzygotic isolation between C. parallelus subspecies, these two species showed no significant reduction in hybrid fitness in F1 or backcross generations relative to the parental generations. The level of prezygotic isolation in laboratory tests was comparable to that between C. parallelus subspecies. These results suggest that endogenous postzygotic isolation does not play an important role in the reproductive isolation between C. brunneus and C. jacobsi , or in determining the structure of the hybrid zone. Exogenous postzygotic isolation may be present and should be tested in future studies.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 195–203.  相似文献   

7.
Speciation studies seek to clarify the origin of reproductive isolation, the various mechanisms working from mate recognition through postzygotic stages. Asymmetric effects of isolating barriers can result in asymmetrical gene introgression during interspecific hybridization. The flightless ground beetles Carabus yamato and C. albrechti are distributed parapatrically in Japan, showing repeated asymmetrical introgression of mitochondria from C. albrechti to C. yamato. This pattern suggests that reproductive isolation between these species is strong, but incomplete and asymmetric (i.e., weaker for the cross between a C. albrechti female and a C. yamato male). To test this hypothesis, we conducted interspecific mating experiments in the laboratory. The estimates of total reproductive isolation, which occurred mainly at the premating and postmating/prezygotic stages, were high (isolation index = 0.964 for C. yamato female × C. albrechti male and 0.886 for the reciprocal cross), supporting the hypothesis of strong, but incomplete isolation. However, the observed difference between the reciprocal crosses was not sufficiently large to conclude that it caused directional introgression of mitochondria. Instead, we found asymmetry in individual isolating barriers in the postmating/prezygotic stages that coincided with the prediction, perhaps resulting from morphological mismatch of heterospecific genitalia. Although this asymmetry was compensated for by an inverse asymmetry of isolation in the postzygotic stage, the contribution of these individual barriers to total isolation may change for our expectation when considering females mating with multiple heterospecific males.  相似文献   

8.
We examined reproductive isolating barriers at four postmating stages among 11 species from the morphologically diverse genus Nolana (Solanaceae). At least one stage was positively correlated with both genetic and geographic distance between species. Postzygotic isolation was generally stronger and faster evolving than postmating prezygotic isolation. In addition, there was no evidence for mechanical isolation, or for reproductive character displacement in floral traits that can influence pollinator isolation. In general, among the potential isolating stages examined here, postzygotic barriers appear to be more effective contributors to reducing gene flow, including between sympatric species.  相似文献   

9.
An outstanding goal in speciation research is to trace the mode and tempo of the evolution of barriers to gene flow. Such research benefits from studying incipient speciation, in which speciation between populations has not yet occurred, but where multiple potential mechanisms of reproductive isolation (RI: i.e., premating, postmating‐prezygotic (PMPZ), and postzygotic barriers) may act. We used such a system to investigate these barriers among allopatric populations of Drosophila montana. In all heteropopulation crosses we found premating (sexual) isolation, which was either symmetric or asymmetric depending on the population pair compared. Postmating isolation was particularly strong in crosses involving males from one of the study populations, and while sperm were successfully transferred, stored, and motile, we experimentally demonstrated that the majority of eggs produced were unfertilized. Thus, we identified the nature of a PMPZ incompatibility. There was no evidence of intrinsic postzygotic effects. Measures of absolute and relative strengths of pre‐ and postmating barriers showed that populations differed in the mode and magnitude of RI barriers. Our results indicate that incipient RI among populations can be driven by different contributions of both premating and PMPZ barriers occurring between different population pairs and without the evolution of postzygotic barriers.  相似文献   

10.
Analyses among animal species have found that reproductive isolation increases monotonically with genetic distance, evolves more quickly for prezygotic than postzygotic traits, and is stronger among sympatric than allopatric species pairs. The latter pattern is consistent with expectations under the reinforcement hypothesis. To determine whether similar trends are found among plant species, patterns of reproductive isolation (postpollination prezygotic, postzygotic, and "total" isolation) in three plant genera (Glycine, Silene, Streptanthus) were examined using data from previously published artificial hybridization experiments. In Silene, all measures of reproductive isolation were positively correlated with genetic distance. In contrast, in Glycine and Streptanthus, correlations between reproductive isolation and genetic distance were weak or nonsignificant, possibly due to the influence of biologically unusual taxa, variable evolutionary forces acting in different lineages, or insufficient time to accumulate reproductive isolation. There was no evidence that postpollination prezygotic reproductive isolation evolved faster than postzygotic isolation in Glycine or Silene. We also detected no evidence for faster accumulation of postmating prezygotic isolation between sympatric than allopatric species pairs; thus we found no evidence for the operation of speciation via reinforcement. In Silene, which included six polyploid species, results suggest that changes in ploidy disrupt a simple monotonic relationship between isolation and genetic distance.  相似文献   

11.
We assessed prezygotic (probability of spawning) and postzygotic (hatching success) reproductive isolation among the three ecologically and morphologically similar species in the Fundulus notatus species complex. We employed a multi-generation breeding experiment to test the hypotheses that karyotypic differences, body size differences, or geographic isolation among populations will increase pre or postzygotic reproductive barriers. Overall, prezygotic barriers were strong and postzygotic barriers weak in crosses of non-hybrid heterospecifics (F1 hybrid crosses) while prezygotic barriers were weaker and postzygotic barriers stronger in crosses involving hybrid individuals (F2 hybrid crosses and backcrosses). Prezygotic barriers among the two smaller species (Fundulus notatus and F. euryzonus) broke down rapidly; first generation hybrids spawned (F2 hybrid crosses and backcrosses) as frequently as parental forms in intraspecific crosses. There was no increase in postzygotic barriers among species with cytogenetic differences. There were increased prezygotic, but not postzygotic, barriers among geographically isolated populations of one species. While pure males and females were just as likely to spawn with hybrids, some types of hybrid females suffered from increased sterility, but not inviability, over hybrid males. Female sterility was only seen in hybrids with a Fundulus euryzonus parent, while other female hybrids produced viable eggs.  相似文献   

12.
The identification and quantification of the relative importance of reproductive isolating barriers is of fundamental importance to understand species maintenance in the face of interspecific gene flow between hybridising species. Yet, such assessments require extensive experimental fertilisations that are particularly difficult when dealing with more than two hybridising and long-generation-time species such as oaks. Here, we quantify the relative contribution of four postmating reproductive isolating barriers consisting of two prezygotic barriers (gametic incompatibility, conspecific pollen precedence) and two postzygotic barriers (germination rate, early survival) from extensively controlled pollinations between four oak species (Quercus robur, Quercus petraea, Quercus pubescens and Quercus pyrenaica) that have been shown to frequently hybridise in natural populations. We found high variation in the strength of total reproductive isolation between species, ranging from total reproductive isolation to advantage toward hybrid formation. As previously found, Q. robur pollen was unable to fertilise Q. petraea due to a strong reproductive isolating mechanism. On the contrary, Q. pubescens pollen was more efficient at fertilising Q. petraea than conspecific pollen. Overall, prezygotic barriers contribute far more than postzygotic barriers to isolate species reproductively, suggesting a role for reinforcement in the development of prezygotic barriers. Conspecific pollen precedence reduced hybrid formation when pollen competition was allowed; however, presence of conspecific pollen did not totally prevent hybridization. Our results suggest that pollen competition depends on multiple ecological and environmental parameters, including species local abundance, and that it may be of uppermost importance to understand interspecific gene flow among natural multispecies populations.  相似文献   

13.
Studies of the strength and nature of reproductive isolation (RI) between species can greatly contribute to our understanding of speciation. Although the role of RI in speciation is well recognized, there is a dearth of information on the contributions of different barriers between related plant species. Here, we estimated multiple components of RI between two Mediterranean orchid sister species (Orchis mascula and Orchis pauciflora), disentangling the strength and absolute contributions of seven different isolating mechanisms. Our survey includes one prepollination, two postpollination prezygotic (pollen–stigma incompatibility, conspecific pollen precedence), two intrinsic postzygotic (embryo mortality and hybrid sterility) and two extrinsic postzygotic (hybrid habitat differentiation and hybrid pollination) isolating mechanisms. We found strong RI between the investigated species, although none of the barriers were able to completely impede gene flow. Five isolating mechanisms contributed positively to the maintenance of species boundaries. Contrary to most surveys of isolating mechanisms, our data speak against a clear predominance of prepollination or of prezygotic barriers but confirm the emerging pattern of multiple barriers contributing to the maintenance of species integrity. These findings suggest an allopatric condition during early phases of species divergence. We discuss our data in the wider context of previous studies carried out in this orchid group by using a comparative approach.  相似文献   

14.
We show that two complementary asymmetric isolating mechanisms, likely mediated by divergence in body size, underlie the evolution of incipient reproductive isolation between a set of Drosophila melanogaster populations selected for rapid development and their ancestral controls. Selection has led to great reduction in body size in the fast developing lines. Small males belonging to fast developing lines obtain few matings with large control females, both in presence and absence of large control line males, giving rise to unidirectional, premating isolation caused by sexual selection. Conversely, small selected line females suffer greatly increased mortality following mating with large control males, causing unidirectional postcopulatory prezygotic isolation. We discuss preliminary evidence for evolution of reduced male harm caused to females upon mating in the fast developing lines, and speculate that the females from these lines have coevolved reduced resistance to male harm such that they can no longer resist the harm caused by males from control lines. This potentially implicates differing levels of sexual conflict in creating reproductive barrier between the selected line females and the control males. We also show that a large difference in development time is not sufficient to cause postzygotic incompatibilities in the two sets of populations reaffirming the belief that prezygotic isolation can evolve much earlier than postzygotic isolation.  相似文献   

15.
Kelleher ES  Markow TA 《Fly》2007,1(1):33-37
The process of speciation requires the development of isolating mechanisms that act as barriers to gene flow between incipient species. Such mechanisms can occur at three different levels: precopulatory or behavioral isolation, postcopulatory-prezygotic isolation occurring in the female reproductive tract, or postzygotic isolation resulting in hybrid sterility or inviability. Only by extensively studying all three types of barriers in young species pairs can we begin to understand the evolution of early reproductive incompatibilities, which may be important to the speciation process. Although precopulatory and postzygotic isolation have been well described it is only recently that the female reproductive tract has been intensely examined for possible mechanisms of reproductive isolation (reviewed in refs 1 and 2). The types of isolating mechanisms that develop at this level and their role in speciation, therefore, remain poorly understood.  相似文献   

16.
The molecular and evolutionary basis of reproductive isolation in plants   总被引:1,自引:0,他引:1  
Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China has made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.  相似文献   

17.
Quantifying the relative contribution of multiple isolation barriers to gene flow between recently diverged species is essential for understanding speciation processes. In parapatric populations, local adaptation is thought to be a major contributor to the evolution of reproductive isolation. However, extrinsic postzygotic barriers assessed in reciprocal transplant experiments are often neglected in empirical assessments of multiple isolation barriers. We analyzed multiple isolation barriers between two closely related species of the plant genus Dianthus, a genus characterized by the most rapid species diversification in plants reported so far. Although D. carthusianorum L. and D. sylvestris Wulf. can easily be hybridized in crossing experiments, natural hybrids are rare. We found that in parapatry, pollinator‐mediated prezygotic reproductive isolation barriers are important for both D. carthusianorum (0.761) and D. sylvestris (0.468). In contrast to D. carthusianorum, high hybrid viability in D. sylvestris (–0.491) was counteracted by strong extrinsic postzygotic isolation (0.900). Our study highlights the importance of including reciprocal transplant experiments for documenting extrinsic postzygotic isolation and demonstrates clearly divergent strategies and hence asymmetric pre‐ and postzygotic reproductive isolation between closely related species. It also suggests that pollinator‐mediated and ecological isolation could have interacted in synergistic ways, further stimulating rapid speciation in Dianthus.  相似文献   

18.
Disentangling the strength and importance of barriers to reproduction that arise between diverging lineages is central to our understanding of species origin and maintenance. To date, the vast majority of studies investigating the importance of different barriers to reproduction in plants have focused on short‐lived temperate taxa while studies of reproductive isolation in trees and tropical taxa are rare. Here, we systematically examine multiple barriers to reproduction in an Amazonian tree, Protium subserratum (Burseraceae) with diverging lineages of soil specialist ecotypes. Using observational, molecular, distributional, and experimental data, we aimed to quantify the contributions of individual prezygotic and postzygotic barriers including ecogeographic isolation, flowering phenology, pollinator assemblage, pollen adhesion, pollen germination, pollen tube growth, seed development, and hybrid fitness to total reproductive isolation between the ecotypes. We were able to identify five potential barriers to reproduction including ecogeographic isolation, phenological differences, differences in pollinator assemblages, differential pollen adhesion, and low levels of hybrid seed development. We demonstrate that ecogeographic isolation is a strong and that a combination of intrinsic and extrinsic prezygotic and postzygotic barriers may be acting to maintain near complete reproductive isolation between edaphically divergent populations of the tropical tree, P. subserratum.  相似文献   

19.
Sexual isolating mechanisms that act before fertilization are often considered the most important genetic barriers leading to speciation in animals. While recent progress has been made toward understanding the genetic basis of the postzygotic isolating mechanisms of hybrid sterility and inviability, little is known about the genetic basis of prezygotic sexual isolation. Here, we map quantitative trait loci (QTL) contributing to prezygotic reproductive isolation between the sibling species Drosophila simulans and D. mauritiana. We mapped at least seven QTL affecting discrimination of D. mauritiana females against D. simulans males, three QTL affecting D. simulans male traits against which D. mauritiana females discriminate, and six QTL affecting D. mauritiana male traits against which D. simulans females discriminate. QTL affecting sexual isolation act additively, are largely different in males and females, and are not disproportionately concentrated on the X chromosome: The QTL of greatest effect are located on chromosome 3. Unlike the genetic components of postzygotic isolation, the loci for prezygotic isolation do not interact epistatically. The observation of a few QTL with moderate to large effects will facilitate positional cloning of genes underlying sexual isolation.  相似文献   

20.
The evolution of reproductive barriers is of central importance for speciation. Here, we investigated three components of postzygotic isolation-embryo mortality, hybrid inviability, and hybrid sterility-in a group of food-deceptive Mediterranean orchids from the genera Anacamptis, Neotinea, and Orchis. In these orchids, pollinator-mediated isolation is weak, which suggests that postpollination barriers exist. Based on crossing experiments and a literature survey, we found that embryo mortality caused complete reproductive isolation among 36.3% of the species pairs, and hybrid inviability affected 55.6% of the potentially hybridizing species pairs. Hybrid sterility was assessed experimentally for seven species pairs. A strong reduction of fertility in all investigated hybrids was found, together with clear differences between male and female components of hybrid sterility. Postzygotic isolation was found to evolve gradually with genetic divergence, and late postzygotic isolation (i.e., hybrid inviability and sterility) evolved faster than embryo mortality, which is an earlier postzygotic isolation stage. These results reveal that intrinsic postzygotic isolation strongly contributes to maintaining species boundaries among Mediterranean food-deceptive orchids while establishing a prominent role for these reproductive barriers in the early stage of species isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号