首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conn JE  Mirabello L 《Heredity》2007,99(3):245-256
Phylogenetic and population genetic data support the Pliocene or Pleistocene divergences of the co-distributed hematophagous insect vectors, the sand fly Lutzomyia longipalpis s.l., the mosquitoes Anopheles darlingi and A. albitarsis s.l., and the triatomines Rhodnius prolixus and R. robustus. We examined patterns of divergence and distribution in relation to three hypotheses of neotropical diversification: Miocene/Pliocene marine incursion, Pliocene/Pleistocene riverine barriers and Pleistocene refugia. Only R. prolixus has a pattern concordant with the refugia hypothesis, and R. robustus conforms to the marine incursion predictions. A. darlingi partially fits the refugia hypothesis. For L. longipalpis s.l. and A. albitarsis s.l., elements of both incursion and refugia hypotheses seem to fit, suggesting perhaps an interaction of factors determining their distribution patterns.  相似文献   

2.
The Neotropics are one of the most species rich regions on Earth, with over 3150 species of birds. This unrivaled biodiversity has been attributed to higher proportions of mountain ranges, tropical rain forest or rain fall in the forest than in any other major biogeographic regions. Five primary hypotheses aim to explain processes of diversification within the Neotropics; (1) the Pleistocene refuge hypothesis, (2) the riverine barrier hypothesis, (3) the Miocene marine incursions hypothesis, (4) the ecological gradient hypothesis, and (5) the impact of the last Andean uplift serving as a barrier between eastern and western population Andean populations. We assessed these hypotheses to see which best explained the species richness of the forest-falcons (Micrastur), a poorly known lineage of birds that inhabit lowland and mid-elevation humid forest. Our analyses suggest all speciation events within the genus Micrastur probably occurred in the last 2.5-3.6 myrs, at or before the Pliocene/Pleistocene boundary, with the basal split within the genus being 7 myrs old. Hence our data allow us to formerly reject the classical Pleistocene refuge for Micrastur, Our divergence time estimates are younger that dates for the Miocene marine incursions, the riverine barrier and the Andean uplift hypotheses.  相似文献   

3.
Among those few hypotheses of Amazonian diversification amenable to falsification by phylogenetic and population genetics methods, three can be singled out because of their general application to vertebrates: the riverine barrier, the refuge, and the Miocene marine incursion hypotheses. I used phylogenetic and population genetics methods to reconstruct the diversification history of the upland (terra-firme) forest superspecies Xiphorhynchus spixii/elegans (Aves: Dendrocolaptidae) in Amazonia, and to evaluate predictions of the riverine barrier, refuge, and Miocene marine incursion hypotheses. Phylogeographic and population genetics analyses of the X. spixiilelegans superspecies indicated that the main prediction of the riverine barrier hypothesis (that sister lineages occur across major rivers) hold only for populations separated by "clear-water" rivers located on the Brazilian shield, in central and eastern Amazonia; in contrast, "white-water" rivers located in western Amazonia did not represent areas of primary divergence for populations of this superspecies. The main prediction derived from the refuge hypothesis (that populations of the X. spixii/elegans superspecies would show signs of past population bottlenecks and recent demographic expansions) was supported only for populations found in western Amazonia, where paleoecological data have failed to support past rainforest fragmentation and expansion of open vegetation types; conversely, populations from the eastern and central parts of Amazonia, where paleoecological data are consistent with an historical interplay between rainforest and open vegetation types, did not show population genetics attributes expected under the refuge hypothesis. Phylogeographic and population genetics data were consistent with the prediction made by the Miocene marine incursion hypothesis that populations of the X. spixii/elegans superspecies found on the Brazilian shield were older than populations from other parts of Amazonia. In contrast, the phylogeny obtained for lineages of this superspecies falsified the predicted monophyly of Brazilian shield populations, as postulated by the Miocene marine incursion hypothesis. In general, important predictions of both riverine barrier and Miocene marine incursion hypotheses were supported, indicating that they are not mutually exclusive; in fact, the data presented herein suggest that an interaction among geology, sea level changes, and hydrography created opportunities for cladogenesis in the X. spixii/elegans superspecies at different temporal and geographical scales.  相似文献   

4.
The relative roles of rivers versus refugia in shaping the high levels of species diversity in tropical rainforests have been widely debated for decades. Only recently has it become possible to take an integrative approach to test predictions derived from these hypotheses using genomic sequencing and paleo‐species distribution modeling. Herein, we tested the predictions of the classic river, refuge, and river‐refuge hypotheses on diversification in the arboreal sub‐Saharan African snake genus Toxicodryas. We used dated phylogeographic inferences, population clustering analyses, demographic model selection, and paleo‐distribution modeling to conduct a phylogenomic and historical demographic analysis of this genus. Our results revealed significant population genetic structure within both Toxicodryas species, corresponding geographically to river barriers and divergence times from the mid‐Miocene to Pliocene. Our demographic analyses supported the interpretation that rivers are indications of strong barriers to gene flow among populations since their divergence. Additionally, we found no support for a major contraction of suitable habitat during the last glacial maximum, allowing us to reject both the refuge and river‐refuge hypotheses in favor of the river‐barrier hypothesis. Based on conservative interpretations of our species delimitation analyses with the Sanger and ddRAD data sets, two new cryptic species are identified from east‐central Africa. This study highlights the complexity of diversification dynamics in the African tropics and the advantages of integrative approaches to studying speciation in tropical regions.  相似文献   

5.
Rivers can act as both islands of mesic refugia for terrestrial organisms during times of aridification and barriers to gene flow, though evidence for long-term isolation by rivers is mixed. Understanding the extent to which riverine barrier effects can be heightened for populations trapped in mesic refugia can help explain maintenance and generation of diversity in the face of Pleistocene climate change. Herein, we implement phylogenetic and population genetic approaches to investigate the phylogeographic structure and history of the ground skink, Scincella lateralis , using mtDNA and eight nuclear loci. We then test several predictions of a river–refugia model of diversification. We recover 14 well-resolved mtDNA lineages distributed east–west along the Gulf Coast with a subset of lineages extending northward. In contrast, ncDNA exhibits limited phylogenetic structure or congruence among loci. However, multilocus population structure is broadly congruent with mtDNA patterns and suggests that deep coalescence rather than differential gene flow is responsible for mtDNA–ncDNA discordance. The observed patterns suggest that most lineages originated from population vicariance due to riverine barriers strengthened during the Plio–Pleistocene by a climate-induced coastal distribution. Diversification due to rivers is likely a special case, contingent upon other environmental or biological factors that reinforce riverine barrier effects.  相似文献   

6.
Phylogeographic patterns of many taxa are explained by Pleistocene glaciation. The temperate rainforests within the Pacific Northwest of North America provide an excellent example of this phenomenon, and competing phylogenetic hypotheses exist regarding the number of Pleistocene refugia influencing genetic variation of endemic organisms. One such endemic is the Pacific giant salamander, Dicamptodon tenebrosus. In this study, we estimate this species' phylogeny and use a coalescent modeling approach to test five hypotheses concerning the number, location and divergence times of purported Pleistocene refugia. Single refugium hypotheses include: a northern refugium in the Columbia River Valley and a southern refugium in the Klamath-Siskiyou Mountains. Dual refugia hypotheses include these same refugia but separated at varying times: last glacial maximum (20,000 years ago), mid-Pleistocene (800,000 years ago) and early Pleistocene (1.7 million years ago). Phylogenetic analyses and inferences from nested clade analysis reveal distinct northern and southern lineages expanding from the Columbia River Valley and the Klamath-Siskiyou Mountains, respectively. Results of coalescent simulations reject both single refugium hypotheses and the hypothesis of dual refugia with a separation date in the late Pleistocene but not hypotheses predicting dual refugia with separation in early or mid-Pleistocene. Estimates of time since divergence between northern and southern lineages also indicate separation since early to mid-Pleistocene. Tests for expanding populations using mismatch distributions and 'g' distributions reveal demographic growth in the northern and southern lineages. The combination of these results provides strong evidence that this species was restricted into, and subsequently expanded from, at least two Pleistocene refugia in the Pacific Northwest.  相似文献   

7.
We implemented a temporally dynamic approach to the cladistic biogeographic analysis of 13 areas of North American deserts and several plant and animal taxa. We undertook a parsimony analysis of paralogy‐free subtrees based on 43 phylogenetic hypotheses of arthropod, vertebrate and plant taxa, assigning their nodes to three different time slices based on their estimated minimum ages: Early‐Mid‐Miocene (23?7 Ma), Late Miocene/Pliocene (6.9?2.5 Ma) and Pleistocene (2.4?0.011 Ma). The analyses resulted in three general area cladograms, one for each time slice, showing different area relationships. They allowed us to detect influences of different geological and palaeoclimatological events of the Early‐Mid‐Miocene, Late Miocene/Pliocene and Pleistocene that might have affected the diversification of the desert biota. Several diversification events in the deserts of North America might have been driven by Neogene uplift, marine incursion and the opening of the California Gulf during the Miocene–Pliocene, whereas climatic fluctuations had the highest impact during the Pleistocene.  相似文献   

8.
Episodic marine incursion has been a major driving force in the formation of present-day diversity. Marine incursion is considered to be one of the most productive ‘species pumps’ particularly because of its division and coalescence effects. Marine incursion events and their impacts on diversity are well documented from South America, North America and Africa; however, their history and impacts in continental East Asia largely remain unknown. Here, we propose a marine incursion scenario occurring in East Asia during the Miocene epoch, 10–17 Ma. Our molecular phylogenetic analysis of Platorchestia talitrids revealed that continental terrestrial populations (Platorchestia japonica) form a monophyletic group that is the sister group to the Northwest Pacific coastal species Platorchestia pacifica. The divergence time between the two species coincides with Middle Miocene high global sea levels. We suggest that the inland form arose as a consequence of a marine incursion event. This is the first solid case documenting the impact of marine incursion on extant biodiversity in continental East Asia. We believe that such incursion event has had major impacts on other organisms and has played an important role in the formation of biodiversity patterns in the region.  相似文献   

9.
Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well‐delimited lineages (Northeast and Southwest) that have diverged along the Cerrado–Caatinga border during the Mid‐Late Miocene (6–14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado–Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process.  相似文献   

10.
Aim This study aims to elucidate the phylogeography of the murid rodent Praomys misonnei and to document whether or not rain forest refugia and rivers structure patterns of diversity within this species. Location Tropical Africa, from Ghana to Kenya. Methods Patterns of genetic structure and signatures of population history (cytochrome b gene) were assessed in a survey of 229 individuals from 54 localities. Using maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intra‐specific relationships and tested hypotheses for historical patterns of gene flow within P. misonnei. Results Our phylogenetic analyses reveal a strong phylogeographical structure. We identified four major geographical clades within P. misonnei: one clade in Ghana and Benin, a Nigerian clade, a West Central African clade and a Central and East African clade. Several subclades were identified within these four major clades. A signal of population expansion was detected in most clades or subclades. Coalescence within all of the major clades of P. misonnei occurred during the Middle Pleistocene and/or the beginning of Late Pleistocene. Main conclusions Our results suggest a role for both Pleistocene refugia and rivers in structuring genetic diversity in P. misonnei. This forest‐dwelling rodent may have been isolated in a number of forest fragments during arid periods and expanded its range during wetter periods. Potential forest refugia may have been localized in Benin–Ghana, south‐western Cameroon, southern Gabon, northern Gabon and eastern Democratic Republic of Congo–western Uganda. The Niger and/or the Cross Rivers, the Oubangui‐Congo, Sanaga, Ogooue and/or Ivindo Rivers probably stopped the re‐expansion of the species from relict areas.  相似文献   

11.
The Atlantic Forest (AF) harbours one of the most diverse vertebrate faunas of the world, including 199 endemic species of birds. Understanding the evolutionary processes behind such diversity has become the focus of many recent, primarily single locus, phylogeographic studies. These studies suggest that isolation in forest refugia may have been a major mechanism promoting diversification, although there is also support for a role of riverine and geotectonic barriers, two sets of hypotheses that can best be tested with multilocus data. Here we combined multilocus data (one mtDNA marker and eight anonymous nuclear loci) from two species of parapatric antbirds, Myrmeciza loricata and M. squamosa, and Approximate Bayesian Computation to determine whether isolation in refugia explains current patterns of genetic variation and their status as independent evolutionary units. Patterns of population structure, differences in intraspecific levels of divergence and coalescent estimates of historical demography fit the predictions of a recently proposed model of refuge isolation in which climatic stability in the northern AF sustains higher diversity and demographic stability than in the southern AF. However, a pre‐Pleistocene divergence associated with their abutting range limits in a region of past tectonic activity also suggests a role for rivers or geotectonic barriers. Little or no gene flow between these species suggests the development of reproductive barriers or competitive exclusion. Our results suggests that limited marker sampling in recent AF studies may compromise estimates of divergence times and historical demography, and we discuss the effects of such sampling on this and other studies.  相似文献   

12.
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling–Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling–Daba Mountains of Central China.  相似文献   

13.
Aim Numerous palaeoecological and genetic studies have shown that different tree species responded in very different ways to Pleistocene climatic oscillations. Some were forced into small refugia far from their current range, while others were able to survive in small refugia close to, or even within, their current natural range. In this study we examine the Pleistocene demography of a juniper species (Juniperus przewalskii, Cupressaceae) from the Qinghai‐Tibetan Plateau. Location The Qinghai‐Tibetan Plateau (QTP). Methods Eight nuclear loci were sequenced in 141 individuals from 20 natural populations distributed across the entire natural range of J. przewalskii, and coalescent analysis was used to test demographic hypotheses. Results The overall nucleotide diversity in the sample was low (πsil = 0.0029), with few rare alleles and pronounced population genetic structure (FST = 0.181). We detected a division previously found using chloroplast DNA markers: all segregating sites in populations from the central part of the QTP appear to be a subset of those found around the edge of the plateau, confirming the relatively young age of the former. In contrast to the middle Pleistocene bottlenecks detected in boreal tree species, the coalescent‐based analyses failed to reject the standard neutral model for the juniper species considered here. Main conclusions Juniperus przewalskii did not undergo marked changes in population sizes during the Pleistocene, although this species seems to have experienced recent, post‐glacial expansion. This finding is largely consistent with the limited number of previous studies on conifer species of the QTP, but contradicts findings of studies on boreal species. These findings have wide implications for understanding plant species’ responses to past climatic oscillations on the high‐elevation QTP.  相似文献   

14.
Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses.  相似文献   

15.
Molecular studies have demonstrated a deep lineage split between the two gorilla species, as well as divisions within these taxa; estimates place this divergence in the mid-Pleistocene, with gene flow continuing until approximately 80,000 years ago. Here, we present analyses of skeletal data indicating the presence of substantial recent gene flow among gorillas at all taxonomic levels: between populations, subspecies, and species. Complementary analyses of DNA sequence variation suggest that low-level migration occurred primarily in a westerly-to-easterly direction. In western gorillas, the locations of hybrid phenotypes map closely to expectations based on population refugia and riverine barrier hypotheses, supporting the presence of significant vicariance-driven structuring and occasional admixture within this taxon. In eastern lowland gorillas, the high frequency of hybrid phenotypes is surprising, suggesting that this region represents a zone of introgression between eastern gorillas and migrants from the west, and underscoring the conservation priority of this critically endangered group. These results highlight the complex nature of evolutionary divergence in this genus, indicate that historical gene flow has played a major role in structuring gorilla diversity, and demonstrate that our understanding of the evolutionary processes responsible for shaping biodiversity can benefit immensely from consideration of morphological and molecular data in conjunction.  相似文献   

16.
Determining the biogeographical histories of rainforests is central to our understanding of the present distribution of tropical biodiversity. Ice age fragmentation of central African rainforests strongly influenced species distributions. Elevated areas characterized by higher species richness and endemism have been postulated to be Pleistocene forest refugia. However, it is often difficult to separate the effects of history and of present-day ecological conditions on diversity patterns at the interspecific level. Intraspecific genetic variation could yield new insights into history, because refugia hypotheses predict patterns not expected on the basis of contemporary environmental dynamics. Here, we test geographically explicit hypotheses of vicariance associated with the presence of putative refugia and provide clues about their location. We intensively sampled populations of Aucoumea klaineana, a forest tree sensitive to forest fragmentation, throughout its geographical range. Characterizing variation at 10 nuclear microsatellite loci, we were able to obtain phylogeographic data of unprecedented detail for this region. Using Bayesian clustering approaches, we demonstrated the presence of four differentiated genetic units. Their distribution matched that of forest refugia postulated from patterns of species richness and endemism. Our data also show differences in diversity dynamics at leading and trailing edges of the species' shifting distribution. Our results confirm predictions based on refugia hypotheses and cannot be explained on the basis of present-day ecological conditions.  相似文献   

17.
The southeastern Nearctic is a biodiversity hotspot that is also rich in cryptic species. Numerous hypotheses (e.g., vicariance, local adaptation, and Pleistocene speciation in glacial refugia) have been tested in an attempt to explain diversification and the observed pattern of extant biodiversity. However, previous phylogeographic studies have both supported and refuted these hypotheses. Therefore, while data support one or more of these diversification hypotheses, it is likely that taxa are forming within this region in species‐specific ways. Here, we generate a genomic data set for the cornsnakes (Pantherophis guttatus complex), which are widespread across this region, spanning both biogeographic barriers and climatic gradients. We use phylogeographic model selection combined with hindcast ecological niche models to determine regions of habitat stability through time. This combined approach suggests that numerous drivers of population differentiation explain the current diversity of this group of snakes. The Mississippi River caused initial speciation in this species complex, with more recent divergence events linked to adaptations to ecological heterogeneity and allopatric Pleistocene refugia. Lastly, we discuss the taxonomy of this group and suggest there may be additional cryptic species in need of formal recognition.  相似文献   

18.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   

19.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

20.
Fragment islands, viewed from the paradigm of island biogeographic theory, depend on continual immigration from continental sources to maintain levels of species diversity, or otherwise undergo a period of relaxation where species diversity declines to a lower equilibrium. Japan is a recently derived fragment island with a rich endemic flora and fauna. These endemic species have been described as paleoendemics, and conversely as recently derived Pleistocene colonists. Geological events in the Miocene period, notably the fragmentation and collision of islands, and the subsequent uplift of mountains in central Japan, provided opportunities for genetic isolation. More recently, cyclical climatic change during the Pliocene and Pleistocene periods led to intermittent land bridge connections to continental Asia. Here we investigate the pattern and timing of diversification in a diverse endemic lineage in order to test whether ongoing migration has sustained species diversity, whether there is evidence of relaxation, and how geological and climatic events are associated with lineage diversification. Using multi-locus genetic data, we test these hypotheses in a poorly dispersing, cold-adapted terrestrial insect lineage (Grylloblattodea: Grylloblattidae) sampled from Japan, Korea, and Russia. In phylogenetic analyses of concatenated data and a species tree approach, we find evidence of three deeply divergent lineages of rock-crawlers in Japan consistent with the pattern of island fragmentation from continental Asia. Tests of lineage diversification rates suggest that relaxation has not occurred and instead endemism has increased in the Japanese Grylloblattidae following mountain-building events in the Miocene. Although the importance of climate change in generating species diversity is a commonly held paradigm in Japanese biogeography, our analyses, including analyses of demographic change and phylogeographic range shifts in putative species, suggests that Pleistocene climatic change has had a limited effect on the diversification of rock-crawlers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号