首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viroids are plant subviral pathogens whose genomes are constituted by a single-stranded and covalently closed small RNA molecule that does not encode for any protein. Most of the 29 described viroid species fold into a rodlike or quasi-rodlike structure, whereas a few of them fold as highly branched structures. In a previous study, we used RNA thermodynamic secondary structure prediction algorithms to compare the mutational robustness of all viroid species. Here we used the same approach to explore the sign and strength of epistasis among pairs of random mutations. We found that antagonistic interactions were more abundant than synergistic ones. However, despite their lower frequency, synergistic interactions tended to be more intense. Mutational robustness and the intensity of epistasis were correlated such that viroid species with large average mutational effects showed stronger antagonistic epistasis, whereas viroids with mild average mutational effects showed weaker antagonistic interactions. The strength of antagonistic epistasis decreased with genome complexity as a consequence of the gained robustness of duplicated genomes. In good agreement with our previous finding of an evolutionary trend toward increased robustness, we now found a trend toward reduced antagonistic epistasis.  相似文献   

2.
Evolution can favor antagonistic epistasis   总被引:2,自引:2,他引:0  
Desai MM  Weissman D  Feldman MW 《Genetics》2007,177(2):1001-1010
The accumulation of deleterious mutations plays a major role in evolution, and key to this are the interactions between their fitness effects, known as epistasis. Whether mutations tend to interact synergistically (with multiple mutations being more deleterious than would be expected from their individual fitness effects) or antagonistically is important for a variety of evolutionary questions, particularly the evolution of sex. Unfortunately, the experimental evidence on the prevalence and strength of epistasis is mixed and inconclusive. Here we study theoretically whether synergistic or antagonistic epistasis is likely to be favored by evolution and by how much. We find that in the presence of recombination, evolution favors less synergistic or more antagonistic epistasis whenever mutations that change the epistasis in this direction are possible. This is because evolution favors increased buffering against the effects of deleterious mutations. This suggests that we should not expect synergistic epistasis to be widespread in nature and hence that the mutational deterministic hypothesis for the advantage of sex may not apply widely.  相似文献   

3.
Epistasis refers to the nonadditive interactions between genes in determining phenotypes. Considerable efforts have shown that, even for a given organism, epistasis may vary both in intensity and sign. Recent comparative studies supported that the overall sign of epistasis switches from positive to negative as the complexity of an organism increases, and it has been hypothesized that this change shall be a consequence of the underlying gene network properties. Why should this be the case? What characteristics of genetic networks determine the sign of epistasis? Here we show, by evolving genetic networks that differ in their complexity and robustness against perturbations but that perform the same tasks, that robustness increased with complexity and that epistasis was positive for small nonrobust networks but negative for large robust ones. Our results indicate that robustness and negative epistasis emerge as a consequence of the existence of redundant elements in regulatory structures of genetic networks and that the correlation between complexity and epistasis is a byproduct of such redundancy, allowing for the decoupling of epistasis from the underlying network complexity.  相似文献   

4.
We investigate the relationship between the average fitness decay due to single mutations and the strength of epistatic interactions in genetic sequences. We observe that epistatic interactions between mutations are correlated to the average fitness decay, both in RNA secondary structure prediction as well as in digital organisms replicating in silico. This correlation implies that, during adaptation, epistasis and average mutational effect cannot be optimized independently. In experiments with RNA sequences evolving on a neutral network, the selective pressure to decrease the mutational load then leads to a reduction in the amount of sequences with strong antagonistic interactions between deleterious mutations in the population.  相似文献   

5.
Sexual reproduction reshapes the genetic architecture of digital organisms   总被引:4,自引:0,他引:4  
Modularity and epistasis, as well as other aspects of genetic architecture, have emerged as central themes in evolutionary biology. Theory suggests that modularity promotes evolvability, and that aggravating (synergistic) epistasis among deleterious mutations facilitates the evolution of sex. Here, by contrast, we investigate the evolution of different genetic architectures using digital organisms, which are computer programs that self-replicate, mutate, compete and evolve. Specifically, we investigate how genetic architecture is shaped by reproductive mode. We allowed 200 populations of digital organisms to evolve for over 10 000 generations while reproducing either asexually or sexually. For 10 randomly chosen organisms from each population, we constructed and analysed all possible single mutants as well as one million mutants at each mutational distance from 2 to 10. The genomes of sexual organisms were more modular than asexual ones; sites encoding different functional traits had less overlap and sites encoding a particular trait were more tightly clustered. Net directional epistasis was alleviating (antagonistic) in both groups, although the overall strength of this epistasis was weaker in sexual than in asexual organisms. Our results show that sexual reproduction profoundly influences the evolution of the genetic architecture.  相似文献   

6.
Lalić J  Elena SF 《Heredity》2012,109(2):71-77
How epistatic interactions between mutations determine the genetic architecture of fitness is of central importance in evolution. The study of epistasis is particularly interesting for RNA viruses because of their genomic compactness, lack of genetic redundancy, and apparent low complexity. Moreover, interactions between mutations in viral genomes determine traits such as resistance to antiviral drugs, virulence and host range. In this study we generated 53 Tobacco etch potyvirus genotypes carrying pairs of single-nucleotide substitutions and measured their separated and combined deleterious fitness effects. We found that up to 38% of pairs had significant epistasis for fitness, including both positive and negative deviations from the null hypothesis of multiplicative effects. Interestingly, the sign of epistasis was correlated with viral protein-protein interactions in a model network, being predominantly positive between linked pairs of proteins and negative between unlinked ones. Furthermore, 55% of significant interactions were cases of reciprocal sign epistasis (RSE), indicating that adaptive landscapes for RNA viruses maybe highly rugged. Finally, we found that the magnitude of epistasis correlated negatively with the average effect of mutations. Overall, our results are in good agreement to those previously reported for other viruses and further consolidate the view that positive epistasis is the norm for small and compact genomes that lack genetic robustness.  相似文献   

7.
Gene networks are likely to govern most traits in nature. Mutations at these genes often show functional epistatic interactions that lead to complex genetic architectures and variable fitness effects in different genetic backgrounds. Understanding how epistatic genetic systems evolve in nature remains one of the great challenges in evolutionary biology. Here we combine an analytical framework with individual-based simulations to generate novel predictions about long-term adaptation of epistatic networks. We find that relative to traits governed by independently evolving genes, adaptation with epistatic gene networks is often characterized by longer waiting times to selective sweeps, lower standing genetic variation, and larger fitness effects of adaptive mutations. This may cause epistatic networks to either adapt more slowly or more quickly relative to a nonepistatic system. Interestingly, epistatic networks may adapt faster even when epistatic effects of mutations are on average deleterious. Further, we study the evolution of epistatic properties of adaptive mutations in gene networks. Our results show that adaptive mutations with small fitness effects typically evolve positive synergistic interactions, whereas adaptive mutations with large fitness effects evolve positive synergistic and negative antagonistic interactions at approximately equal frequencies. These results provide testable predictions for adaptation of traits governed by epistatic networks and the evolution of epistasis within networks.  相似文献   

8.
Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We consider how processes such as drift, admixture, Hill–Robertson interference, and epistasis may contribute to these patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating, and that genome-wide differences across site types are generally expected due to differences in the strength of purifying selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antagonistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes. Finally, we use information from published biological networks to explore whether there is evidence for negative synergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.  相似文献   

9.
Many biological networks can maintain their function against single gene loss. However, the evolutionary mechanisms responsible for such robustness remain unclear. Here, we demonstrate that antagonistic host–parasite interactions can act as a selective pressure driving the emergence of robustness against gene loss. Using a model of host signaling networks and simulating their coevolution with parasites that interfere with network function, we find that networks evolve both redundancy and specific architectures that allow them to maintain their response despite removal of proteins. We show that when the parasite pressure is removed, subsequent evolution can lead to loss of redundancy while architecture‐based robustness is retained. Contrary to intuition, increased parasite virulence hampers evolution of robustness by limiting the generation of population level diversity in the host. However, when robustness emerges under high virulence, it tends to be stronger. These findings predict an increased presence of robustness mechanisms in biological networks operating under parasite interference. Conversely, the presence of such mechanisms could indicate current or past parasite interference.  相似文献   

10.
Distributed robustness versus redundancy as causes of mutational robustness   总被引:15,自引:0,他引:15  
A biological system is robust to mutations if it continues to function after genetic changes in its parts. Such robustness is pervasive on different levels of biological organization, from macromolecules to genetic networks and whole organisms. I here ask which of two possible causes of such robustness are more important on a genome-wide scale, for systems whose parts are genes, such as metabolic and genetic networks. The first of the two causes is redundancy of a system's parts: A gene may be dispensable if the genome contains redundant, back-up copies of the gene. The second cause, distributed robustness, is more poorly understood. It emerges from the distributed nature of many biological systems, where many (and different) parts contribute to system functions. I will here discuss evidence suggesting that distributed robustness is equally or more important for mutational robustness than gene redundancy. This evidence comes from the functional divergence of redundant genes, as well as from large-scale gene deletion studies. I also ask whether one can quantify the extent to which redundancy or distributed robustness contribute to mutational robustness.  相似文献   

11.
Whether interaction between genes is better represented by synergistic or antagonistic epistasis has been a focus of experimental research in bacterial population genetics. Our previous research on evolution of modifiers of epistasis in diploid systems has indicated that the strength of positive or negative epistasis should increase provided linkage disequilibrium is maintained. Here we study a modifier of epistasis in fitness between two loci in a haploid system. Epistasis is modified in the neighborhood of a mutation-selection balance. We show that when linkage in the three-locus system is tight, an increase in the frequency of a modifier allele that induces either more negative or more positive epistasis is possible. Epistasis here can be measured on either an additive or multiplicative scale.  相似文献   

12.

Background

The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect) has been observed.

Results

We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances.

Conclusions

Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.
  相似文献   

13.
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12) sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.  相似文献   

14.
Sardanyés J  Elena SF 《PloS one》2011,6(9):e24884
Empirical observations and theoretical studies suggest that viruses may use different replication strategies to amplify their genomes, which impact the dynamics of mutation accumulation in viral populations and therefore, their fitness and virulence. Similarly, during natural infections, viruses replicate and infect cells that are rarely in suspension but spatially organized. Surprisingly, most quasispecies models of virus replication have ignored these two phenomena. In order to study these two viral characteristics, we have developed stochastic cellular automata models that simulate two different modes of replication (geometric vs stamping machine) for quasispecies replicating and spreading on a two-dimensional space. Furthermore, we explored these two replication models considering epistatic fitness landscapes (antagonistic vs synergistic) and different scenarios for cell-to-cell spread, one with free superinfection and another with superinfection inhibition. We found that the master sequences for populations replicating geometrically and with antagonistic fitness effects vanished at low critical mutation rates. By contrast, the highest critical mutation rate was observed for populations replicating geometrically but with a synergistic fitness landscape. Our simulations also showed that for stamping machine replication and antagonistic epistasis, a combination that appears to be common among plant viruses, populations further increased their robustness by inhibiting superinfection. We have also shown that the mode of replication strongly influenced the linkage between viral loci, which rapidly reached linkage equilibrium at increasing mutations for geometric replication. We also found that the strategy that minimized the time required to spread over the whole space was the stamping machine with antagonistic epistasis among mutations. Finally, our simulations revealed that the multiplicity of infection fluctuated but generically increased along time.  相似文献   

15.
In order to detect possible synergistic epistasis for viability in Drosophila melanogaster we assayed the relative viability of chromosomes II in: (i) panmixia, (ii) forced total homozygosity, and (iii) homozygosity for, on the average, half of their loci. As these genotypes were constructed using exactly the same set of chromosomes in the three cases, the design allows us to estimate the inbreeding depression rate at two different inbreeding levels in the absence of purging natural selection. Overall, no consistent synergistic epistasis was found. However, there was a small fraction of chromosomes whose severely deleterious effect when homozygous was almost significantly larger than expected from their viability when homozygous for half of their loci. This suggests occasional but important synergistic epistasis, which might confer evolutionary advantage to recombination in tightly linked genomes. Nevertheless, such epistasis is unlikely to be an evolutionary advantage driving the evolution of sexual anisogamous reproduction, as its contribution to overall viability is small when compared with the two-fold cost of anisogamy.  相似文献   

16.
17.
Epistatic interactions between mutations are thought to play a crucial role in a number of evolutionary processes, including adaptation and sex. Evidence for epistasis is abundant, but tests of general theoretical models that can predict epistasis are lacking. In this study, I test the ability of metabolic control theory to predict epistasis using a novel experimental approach that combines phenotypic and genetic perturbations of enzymes involved in gene expression and protein synthesis in the bacterium Pseudomonas aeruginosa. These experiments provide experimental support for two key predictions of metabolic control theory: (i) epistasis between genes involved in the same pathway is antagonistic; (ii) epistasis becomes increasingly antagonistic as mutational severity increases. Metabolic control theory is a general theory that applies to any set of genes that are involved in the same linear processing chain, not just metabolic pathways, and I argue that this theory is likely to have important implications for predicting epistasis between functionally coupled genes, such as those involved in antibiotic resistance. Finally, this study highlights the fact that phenotypic manipulations of gene activity provide a powerful method for studying epistasis that complements existing genetic methods.  相似文献   

18.
Abstract.— Determining the way in which deleterious mutations interact to effect fitness is crucial to numerous areas in evolutionary biology. For example, if each additional mutation leads to a greater decrease in log fitness than the last, termed synergistic epistasis, then sex and recombination provide an advantage because they enable deleterious mutations to be eliminated more efficiently. However, there is a severe shortage of relevant empirical data, especially of the form that can help test mutational explanations for the widespread occurrence of sex. Here, we test for epistasis in the parasitic wasp Nasonia vitripennis , examining the fitness consequences of chemically induced deleterious mutations. We examine two components of fitness, both of which are thought to be important in natural populations of parasitic wasps: longevity and egg production. Our results show synergistic epistasis for longevity, but not for egg production.  相似文献   

19.
Adaptive evolution often involves beneficial mutations at more than one locus. In this case, the trajectory and rate of adaptation is determined by the underlying fitness landscape, that is, the fitness values and mutational connectivity of all genotypes under consideration. Drug resistance, especially resistance to multiple drugs simultaneously, is also often conferred by mutations at several loci so that the concept of fitness landscapes becomes important. However, fitness landscapes underlying drug resistance are not static but dependent on drug concentrations, which means they are influenced by the pharmacodynamics of the drugs administered. Here, I present a mathematical framework for fitness landscapes of multidrug resistance based on Hill functions describing how drug concentrations affect fitness. I demonstrate that these ‘pharmacodynamic fitness landscapes’ are characterized by pervasive epistasis that arises through (i) fitness costs of resistance (even when these costs are additive), (ii) nonspecificity of resistance mutations to drugs, in particular cross‐resistance, and (iii) drug interactions (both synergistic and antagonistic). In the latter case, reciprocal drug suppression may even lead to reciprocal sign epistasis, so that the doubly resistant genotype occupies a local fitness peak that may be difficult to access by evolution. Simulations exploring the evolutionary dynamics on some pharmacodynamic fitness landscapes with both constant and changing drug concentrations confirm the crucial role of epistasis in determining the rate of multidrug resistance evolution.  相似文献   

20.
Recent research on ecological networks suggests that mutualistic networks are more nested than antagonistic ones and, as a result, they are more robust against chains of extinctions caused by disturbances. We evaluate whether mutualistic networks are more nested than comensalistic and antagonistic networks, and whether highly nested, host-epiphyte comensalistic networks fit the prediction of high robustness against disturbance. A review of 59 networks including mutualistic, antagonistic and comensalistic relationships showed that comensalistic networks are significantly more nested than antagonistic and mutualistic networks, which did not differ between themselves. Epiphyte-host networks from old-growth forests differed from those from disturbed forest in several topological parameters based on both qualitative and quantitative matrices. Network robustness increased with network size, but the slope of this relationship varied with nestedness and connectance. Our results indicate that interaction networks show complex responses to disturbances, which influence their topology and indirectly affect their robustness against species extinctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号