首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Upon addition of nitrate and ammonium, respectively, to the bath of intact ‘low salt’ maize plants, the cortical membrane potential and the trans-root potential changed in a similar and synchronous way as revealed by applying conventional microelectrode techniques and the xylem pressure-potential probe ( Wegner & Zimmermann 1998). Upon addition of nitrate, a hyperpolarization response was observed which was frequently preceded by a short depolarization phase. In contrast, addition of ammonium resulted in an overall depolarization response both of the cortical membrane potential and the trans-root potential. The nitrate-induced hyperpolarization response and the depolarization following the addition of ammonium were concentration-dependent. The data suggest that a tight electrical coupling exists between the cellular and tissue level in the root of the intact plant and that the resistance of the cellular (symplastic) space is much less than the resistance of the apoplast.  相似文献   

2.
In higher plants the xylem is the main pathway for anti-gravitational, long-distance transport of nutrients and water from the root through the shoot to the upper leaves. In the xylem conduit water is in a metastable state if tension larger than 0.1 MPa (i.e. negative pressure) is developed. While diurnal changes in negative pressure of individual xylem vessels can quite accurately be recorded by the minimal-invasive xylem pressure probe technique and water flow by non-invasive NMR techniques, the problem of continuous monitoring of solute flow remains a hitherto unresolved challenge. As shown here, integration of a K+ selective and a potential measuring microelectrode into the xylem pressure probe allowed on-line measurements of the K+ activity in individual xylem vessels of maize roots together with pressure and trans-root potential, the potential difference between the xylem and the external medium (i.e. the overall driving force of ions through the root tissue). When light irradiation was increased from 10 micro mol m(-2) s(-1) to 300 micro mol m(-2) s(-1) and negative pressure developed in the vessel, xylem K+ activity dropped from 3.6 +/- 2.6 mm to 0.9 +/- 0.7 mm (n = 16), whereas the trans-root potential depolarized from -2 +/- 11 mV to + 12 +/- 11 mV (n = 11), i.e. by + 14 +/- 7 mV. The effect of light on all three parameters was reversible. Exposure of the root to various K+ activities in the bath ranging from 0.1 to 43 mm revealed that the K+ activity of the xylem sap was shielded against short-term fluctuations in K+ supply to a large extent. In contrast, control experiments in which the root was cut 1 cm below the probe insertion point, allowing direct entry of external K+ into the xylem vessels, demonstrated that the xylem equilibrated rapidly with external K+. This was taken simultaneously as a proof for the correct reading of the probe.  相似文献   

3.
The absolute pressure in conducting xylem vessels of roots of 2-week-old, slowly transpiring intact maize plants (bathed in nutrition medium) was determined to be +0·024 ± 0·044 MPa using the xylem pressure probe. When the roots were subjected to osmotic stress (NaCI, KCI or sucrose), the xylem pressure decreased immediately and became more negative. However, the response of xylem pressure to osmotic stress was considerably attenuated, indicating that the radial reflection coefficients, σ13 of the maize root for these solutes were rather low (between 0·2 and 0·4 depending on the concentration of the osmoticum). The low values of a, may be caused (partly) by unstirred layer effects. In repeated osmoticum/nutrition regimes a complex pattern of changes in xylem pressure was observed which was apparently linked to the interplay between transpiration and (passive and/or active) solute loading of the xylem. These processes were not observed when the roots were subjected to osmotic stress after excision. In this case, a biphasic response was observed comparable to that found for excised roots using the root pressure probe.  相似文献   

4.
5.
Xylem probe measurements in the roots of intact plants of wheat and barley revealed that the xylem pressure decreased rapidly when the roots were subjected to osmotic stress (NaCl or sucrose). The magnitude of the xylem pressure response and, in turn, that of the radial reflection coefficients (σr) depended on the transpiration rate. Under very low transpiration conditions (darkness and high relative humidity), σr assumed values of the order of about 0·2–0·4. The σr values of excised roots were also found to be rather low, in agreement with data obtained using the root pressure probe of Steudle. For transpiring plants (light intensities at least 10 μmol m?2 s?1; relative humidity 20–40%) the response was nearly 1:1, corresponding to radial reflection coefficients of σr= 1. Further increase of the light intensity to about 400 μmol m?2 s?1 resulted in a slight but significant decrease of the σr values to about 0·8. Similar measurements on maize roots confirmed our previous results (Zhu et al. 1995, Plant, Cell and Environment 18, 906–912) that, in intact transpiring plants at low light intensities of about 10 μmol m?2 s?1 and at relative humidities of 20–40% as well as in excised roots, the xylem pressure response was much less than expected from the external osmotic pressure (σr values 0·3–0·5). In contrast to wheat and barley, very high light intensities (about 700 μmol m?2 s?1) were needed to shift the radial reflection coefficients of maize roots to values of about 0·9. Osmotically induced xylem pressure changes were apparently linked to changes in turgor pressure in the root cortical parenchyma cells, as shown by simultaneous measurements of xylem and cell turgor pressure. In analogy to the σr values of the respective glycophytes, the σc values of the root cortical cells of wheat and barley were close to unity, whereas σc for maize was significantly smaller (about 0·7) under laboratory conditions. When the light intensity was increased up to about 700 μmol m?2 s?1 the cellular reflection coefficient of maize roots increased to about 0·95. In contrast to the σr values, the σc values of the three species investigated remained almost unchanged when the leaves were exposed to darkness and humidified air or when the roots were cut. The transpiration-dependent (species-specific) pattern of the cellular and radial reflection coefficients of the root compartment of the three glycophytes apparently resulted from (flow-dependent) concentration-polarization and sweep-away effects in the roots of intact plants. The data could be explained straightforwardly terms of theoretical considerations outlined previously by Dainty (1985, Acta Horticulturae 171, 21–31). The far-reaching consequences of this finding for root pressure probe measurements on excised roots, for the occurrence of pressure gradients under transpiring conditions, and for the non-linear flow-force relationships in roots found by other investigators are discussed.  相似文献   

6.
How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA ( S ABA) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. S ABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. S ABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of S ABA to changes in root water potential ( Ψ root) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of S ABA to RWC were due to different RWC values among categories at a given Ψ root, and not to differences in the response of S ABA to Ψ root.  相似文献   

7.
Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.  相似文献   

8.
* The existing literature is ambiguous as to whether the diurnal pulse in phytosiderophore (PS) release in the Poaceae is mediated by light or temperature, or both. * Here, wheat (Triticum aestivum cv. Yecora Rojo) seedlings were grown in Fe-sufficient (pFe = 16.5) and Fe-deficient (pFe = 17.8) chelator-buffered nutrient solutions. Six different light/temperature regimes were tested over 8 d in paired growth chambers. * Phytosiderophore release patterns under a square-wave light regime were similar, irrespective of whether temperature was varied diurnally or held constant, but PS release was negligible when the light was removed. Release patterns of PS for Fe-deficient and Fe-sufficient plants grown under the square-wave vs ramped light and temperature regimes were similar in the corresponding Fe treatments. * Our results strongly support the notion that the diurnal pulse in PS release in the Poaceae is mainly mediated by changes in light rather than temperature. Our comparison of square-wave with more natural ramped light/temperature regimes suggests that the diurnal response patterns of PS release in wheat can be confidently studied using traditional square-wave regimes, and this is likely to be the case with other Poaceae as well.  相似文献   

9.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

10.
Many crop models relate the allocation of dry matter between shoots and roots exclusively to the crop development stage. Such models may not take into account the effects of changes in environment on allocation, unless the allocation parameters are altered. In this paper a crop model with a dynamic allocation parameter for dry matter between shoots and roots is described. The basis of the model is that a plant allocates dry matter such that its growth is maximized. Consequently, the demand and supply of carbon, nitrogen, and water is maintained in balance. This model supports the hypothesis that a functional equilibrium exists between shoots and roots.This paper explains the mathematical computation procedure of the crop model. Moreover, an analysis was made of the ability of a crop model to simulate plant dry matter production and allocation of dry matter between plant organs. The model was tested using data from a greenhouse experiment in which spring wheat (Triticum aestivum L.) was grown under different soil moisture and nitrogen (N) levels.Generally, the model simulations agreed well with data recorded for total plant dry matter. For validation data the coefficient of determination (r2) between simulated and measured shoot dry weight was 0.96. For the validation treatments r2 was slightly lower, 0.94. In addition to dry matter production the model succeeded satisfactorily in simulating the dry weight of different plant organs. The response of simulated root to shoot ratio to the level of soil moisture was mainly in accordance with the measured data. In contrast, the simulated ratio seemed to be insensitive to the changes in the levels soil N concentration used in the experiment.The data used in the present study were not extensive, and more data are needed to validate the model. However, the results showed that the model responses to the changes in soil N and water level were realistic and mostly agreed with the data. Thus, we suggest that the model and the method employed to allocate dry matter between roots and shoots are useful when modelling the growth of crops under N and water limited conditions.  相似文献   

11.
Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai’an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL×environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rht1 and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).  相似文献   

12.
The maize (Zea mays L.) kernel undergoes large changes in water content during its development. Whether such changes regulate the pattern of kernel development or are simply a consequence of it has not yet been established because other factors, such as assimilate supply, can also affect the rate and duration of kernel growth. This study was conducted to determine whether variation in kernel weight (KW) in response to source-sink treatments is mediated by a change in kernel water relations. Two hybrids were sown at three stand densities (one, eight and 18 plants m-2), and kernel numbers were restricted to control the post-flowering source-sink ratio within each stand density. Kernel development and water relations [water content, water potential (psiw), osmotic potential (psis) and turgor] were monitored throughout grain filling. Final KW varied from 253 to 372 mg per kernel in response to source-sink treatments. For both genotypes, variation in KW was a result of a change in kernel growth rate (r2 = 0.91; P < 0.001) and not in the duration of kernel filling. Final KW was closely correlated with maximum kernel water content (r2 = 0.94; P < 0.001) achieved during rapid dry matter accumulation. However, variation in KW was not reflected in kernel water status parameters (psiw, psis or turgor), which remained fairly stable across treatments. These results indicate that maximum water content provides an easily quantifiable measure of kernel sink capacity in maize. Kernel water status parameters may affect the duration of grain filling, but have no discernible impact on kernel growth rate.  相似文献   

13.
The lack of information about the movement of aluminum (Al) across the plasma membrane presents a significant barrier to the elucidation of resistance mechanisms which may involve exclusion of Al from the symplast. An understanding of mechanistic aspects of exclusion requires the estimation of symplastic Al levels. Such measurements may be achievable through the use of a kinetic approach. A kinetic protocol was developed to characterize the accumulation and distribution of Al in various cellular compartments in roots of wheat (Triticum aestivum L.). The kinetics of uptake and desorption were similar when Al was supplied as AIK(SO4)2 or as AlCl3. When both salts were supplied at low concentration (50 μM), Al bound to a purified cell wall fraction could be reduced to less than 10–20% of non-exchangeable Al, if roots were washed for 30 min in citric acid following exposure. In contrast, when AlK(SO4)2 was supplied at a high concentration (200 μM), a strong linear phase of uptake into cell wall material was observed, which accounted for approximately 48% of non-exchangeable Al in roots. These results suggest that the use of low concentrations of Al in simple salt solutions is required to minimize accumulation of non-exchangeable Al in the apoplasm. A series of multiple-desorption experiments confirmed that citric acid was effective in removing Al from the cell wall compartment of roots exposed to Al for short periods (3 h). However, long exposures (48 h) appeared to create conditions conducive to the accumulation of non-exchangeable Al in the cell wall. In experiments where uptake from solutions containing 50 μM AlCl3 was followed by desorption in citric acid, non-exchangeable Al in microsomal membrane fractions represented less than 4% of total non-exchangeable Al. Thus, we can exclude the plasma membrane and cell wall as major sites for accumulation of non-exchangeable Al in short exposure studies. Although we cannot provide unequivocal evidence for the localization of Al within the symplast, use of simple salt solutions followed by desorption in citric acid provides the best kinetic technique currently available for the quantitation of Al in the symplasm.  相似文献   

14.

cv, cultivar
δ, deviation of C isotope composition from a standard
Δ, C isotope discrimination
WSC, water soluble carbohydrates

Steady-state labelling of all post-anthesis photosynthate of wheat was performed to assess the mobilization of pre-anthesis C (C fixed prior to anthesis) in vegetative plant parts during grain filling. Results were compared with estimates obtained by indirect approaches to mobilization of pre-anthesis C: ‘classical’ growth analysis and balance sheets of water soluble carbohydrates (WSC) and protein. Experiments were performed with two spring wheat cultivars grown with differential nitrogen fertilizer supply in 1991 and 1992. The fraction of pre-anthesis C mobilized in above-ground vegetative biomass ranged between 24 and 34% of total C present at anthesis. Treatment effects on mobilization of pre-anthesis C in total above-ground vegetative biomass were closely related (r2 = 0·89) to effects on mobilization of WSC-C plus protein-C (estimated as N mobilized × 3·15). On average, 81% of pre-anthesis C mobilization was attributable to the balance of pre-anthesis WSC (48%) and protein (33%) between anthesis and maturity. In roots, WSC and protein mobilization accounted for only 29% of the loss of pre-anthesis C. Notably, mobilization of pre-anthesis C was 1·4–2·6 times larger than the net loss of C from above-ground vegetative biomass between anthesis and maturity. This discrepancy was mainly due to post-anthesis C accumulation in glumes and stem. Post-anthesis C accumulation was related to continued synthesis of structural biomass after anthesis and accounted for a mean 15% of total C contained in above-ground vegetative plant parts at maturity. A close correspondence between net loss of C and mobilization of pre-anthesis C was only apparent in leaf blades and leaf sheaths. Although balance sheets of WSC and protein also underrated the mobilization of pre-anthesis C by ≈ 19%, they gave a much better estimate of pre-anthesis C mobilization than growth analysis.  相似文献   

15.
The role of fructan metabolism in the assimilate relations of the grain of wheat (Triticum aestivum L.) was investigated by determination of the dry matter and fructan content of grain components at short intervals during grain filling. During the initial phase of rapid expansion, most of the assimilates entering the grain were partitioned to the outer pericarp. A large fraction of these assimilates were used for the synthesis of fructan. Dry matter deposition and fructan synthesis in the outer pericarp ceased at about 5d after anthesis. At the same time, the endosperm and the inner pericarp and testa started to accumulate dry matter at a fast rate. This was also associated with significant fructan synthesis in the latter tissues. The outer pericarp lost about 45% of its former maximum dry weight between 9 and 19 d after anthesis. This loss was due almost entirely to the near complete disappearance of water-soluble carbohydrates, most of which was fructan. The inner pericarp and testa accumulated dry matter until about mid-grain filling. The fructan contents of the inner pericarp and testa and the endosperm decreased slowly towards the end of grain filling. Most of the fructans in the inner pericarp and testa and the endosperm had a low molecular weight, whereas higher molecular weight fructans predominated in the outer pericarp. The embryo did not contain fructan. The presence of low molecular weight fructans in the endosperm cavity at mid-grain filling was confirmed. It is suggested that fructan synthesis is closely linked to growth-related water deposition in the different tissues of the wheat grain and serves to sequester the surplus of imported sucrose.  相似文献   

16.
With the aid of measurements of the fluorescence yield, the efficiency of the various deexcitation mechanisms of an exciton in the light-harvesting system has been determined. For this purpose, the fluorescence of dark-adapted as well as of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated and preilluminated leaves of Zea mays L. was excited by single ultrashort laser pulses of different energies. The experimental results have served for the fitting of solutions of rate equations, which describe the deexcitation by linear relaxation processes like fluorescence and radiationless transitions, by annihiation of excitons, and by traps both in the ground state and in an excited state. We have obtained the following results: a ratio of antenna chlorophyll molecules to Photosystem II traps of 600:1, an annihilation constant γ = 2·10?8 cm3·s?1, a mean trapping time of t?=0.5 ns, a trapping probability for traps in the ground state of 2·10?8 cm3·s?1, and 6·10?9 cm3·s?1 for traps in an excited state.  相似文献   

17.
This study assesses whether the phylogenetic relationships between SODs from different organisms could assist in elucidating the functional relationships among these enzymes from evolutionarily distinct species. Phylogenetic trees and intron positions were compared to determine the relationships among these enzymes. Alignment of Cu/ZnSOD amino acid sequences indicates high homology among plant sequences, with some features that distinguish chloroplastic from cytosolic Cu/ZnSODs. Among eukaryotes, the plant SODs group together. Alignment of the Mn and FeSOD amino acid sequences indicates a higher degree of homology within the group of MnSODs (>70%) than within FeSODs (approximately 60%). Tree topologies are similar and reflect the taxonomic classification of the corresponding species. Intron number and position in the Cu/Zn Sod genes are highly conserved in plants. Genes encoding cytosolic SODs have seven introns and genes encoding chloroplastic SODs have eight introns, except the chloroplastic maize Sod1, which has seven. In Mn Sod genes the number and position of introns are highly conserved among plant species, but not among nonplant species. The link between the phylogenetic relationships and SOD functions remains unclear. Our findings suggest that the 5' region of these genes played a pivotal role in the evolution of function of these enzymes. Nevertheless, the system of SODs is highly structured and it is critical to understand the physiological differences between the SODs in response to different stresses in order to compare their functions and evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号