首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LEAFY HULL STERILE1 (LHS1) is an MIKC-type MADS-box gene in the SEPALLATA class. Expression patterns of LHS1 homologs vary among species of grasses, and may be involved in determining palea and lemma morphology, specifying the terminal floret of the spikelet, and sex determination. Here we present LHS1 expression data from Eleusine indica (subfamily Chloridoideae) and Megathyrsus maximus (subfamily Panicoideae) to provide further insights into the hypothesized roles of the gene. E. indica has spikelets with three to eight florets that mature acropetally; E. indica LHS1 (EiLHS1) is expressed in the palea and lemma of all florets. In contrast, M. maximus has spikelets with two florets that mature basipetally; M. maximus LHS1 (MmLHS1) is expressed in the palea and lemma of the distal floret only. These data are consistent with the hypothesis that LHS1 plays a role in determining palea and lemma morphology and specifies the terminal floret of basipetally maturing grass spikelets. However, LHS1 expression does not correlate with floret sex expression; MmLHS1 is restricted to the bisexual distal floret, whereas EiLHS1 is expressed in both sterile and bisexual floret meristems. Phylogenetic analyses reconstruct a complex pattern of LHS1 expression evolution in grasses. LHS1 expression within the gynoecium has apparently been lost twice, once before diversification of a major clade within tribe Paniceae, and once in subfamily Chloridoideae. These data suggest that LHS1 has multiple roles during spikelet development and may have played a role in the diversification of spikelet morphology.  相似文献   

2.
Duplicated APETALA1/FRUITFULL (AP1/FUL) genes show distinct but overlapping patterns of expression within rice (Oryza sativa) and within ryegrass (Lolium temulentum), suggesting discrete functional roles in the transition to flowering, specification of spikelet meristem identity, and specification of floral organ identity. In this study, we analyzed the expression of the AP1/FUL paralogues FUL1 and FUL2 across phylogenetically disparate grasses to test hypotheses of gene function. In combination with other studies, our data support similar roles for both genes in spikelet meristem identity, a general role for FUL1 in floral organ identity, and a more specific role for FUL2 in outer floral whorl identity. In contrast to Arabidopsis AP1/FUL genes, expression of FUL1 and FUL2 is consistent with an early role in the transition to flowering. In general, FUL1 has a wider expression pattern in all spikelet organs than FUL2, but both genes are expressed in all spikelet organs in some cereals. FUL1 and FUL2 appear to have multiple redundant functions in early inflorescence development. We hypothesize that sub-functionalization of FUL2 and interaction of FUL2 with LHS1 could specify lemma and palea identity in the grass floret.  相似文献   

3.
The architecture of maize inflorescences, the male tassel and the female ear, is defined by a series of reiterative branching events. The inflorescence meristem initiates spikelet pair meristems. These in turn initiate spikelet meristems which finally produce the floret meristems. After initiating one meristem, the spikelet pair and spikelet meristem convert into spikelet and floret meristems, respectively. The phenotype of reversed germ orientation1 (rgo1) mutants is the production of an increased number of floret meristems by each spikelet meristem. The visible phenotypes include increased numbers of flowers in tassel and ear spikelets, disrupted rowing in the ear, fused kernels, and kernels with embryos facing the base of the ear, the opposite orientation observed in wild-type ears. rgo1 behaves as single recessive mutant. indeterminate spikelet1 (ids1) is an unlinked recessive mutant that has a similar phenotype to rgo1. Plants heterozygous for both rgo1 and ids1 exhibit nonallelic noncomplementation; these mutants fail to complement each other. Plants homozygous for both mutations have more severe phenotypes than either of the single mutants; the progression of meristem identities is retarded and sometimes even reversed. In addition, in rgo1; ids1 double mutants extra branching is observed in spikelet pair meristems, a meristem that is not affected by mutants of either gene individually. These data suggest a model for control of meristem identity and determinacy in which the progress through meristem identities is mediated by a dosage-sensitive pathway. This pathway is combinatorially controlled by at least two genes that have overlapping functions.  相似文献   

4.
5.
6.
Flowering (inflorescence formation) of the grass Lolium temulentum is strictly regulated, occurring rapidly on exposure to a single long day (LD). During floral induction, L. temulentum differs significantly from dicot species such as Arabidopsis in the expression, at the shoot apex, of two APETALA1 (AP1)-like genes, LtMADS1 and LtMADS2, and of L. temulentum LEAFY (LtLFY). As shown by in situ hybridization, LtMADS1 and LtMADS2 are expressed in the vegetative shoot apical meristem, but expression increases strongly within 30 h of LD floral induction. Later in floral development, LtMADS1 and LtMADS2 are expressed within spikelet and floret meristems and in the glume and lemma primordia. It is interesting that LtLFY is detected quite late (about 12 d after LD induction) within the spikelet meristems, glumes, and lemma primordia. These patterns contrast with Arabidopsis, where LFY and AP1 are consecutively activated early during flower formation. LtMADS2, when expressed in transgenic Arabidopsis plants under the control of the AP1 promoter, could partially complement the organ number defect of the severe ap1-15 mutant allele, confirming a close relationship between LtMADS2 and AP1.  相似文献   

7.
Diverse roles for MADS box genes in Arabidopsis development.   总被引:17,自引:1,他引:16       下载免费PDF全文
Members of the MADS box gene family play important roles in flower development from the early step of determining the identity of floral meristems to specifying the identity of floral organ primordia later in flower development. We describe here the isolation and characterization of six additional members of this family, increasing the number of reported Arabidopsis MADS box genes to 17. All 11 members reported prior to this study are expressed in flowers, and the majority of them are floral specific. RNA expression analyses of the six genes reported here indicate that two genes, AGL11 and AGL13 (AGL for AGAMOUS-like), are preferentially expressed in ovules, but each has a distinct expression pattern. AGL15 is preferentially expressed in embryos, with its onset at or before the octant stage early in embryo development. AGL12, AGL14, and AGL17 are all preferentially expressed in root tissues and therefore represent the only characterized MADS box genes expressed in roots. Phylogenetic analyses showed that the two genes expressed in ovules are closely related to previously isolated MADS box genes, whereas the four genes showing nonfloral expression are more distantly related. Data from this and previous studies indicate that in addition to their proven role in flower development, MADS box genes are likely to play roles in many other aspects of plant development.  相似文献   

8.
9.
10.
11.
The molecular and genetic control of inflorescence and flower development has been studied in great detail in model dicotyledonous plants such as Arabidopsis and Antirrhinum . In contrast, little is known about these important developmental steps in monocotyledonous species. Here we report the analysis of the Zea mays mutant branched silkless1–2 (bd1–2) , allelic to bd1 , which we have used as a tool to study the transition from spikelet to floret development in maize. Floret development is blocked in the female inflorescence (the ear) of bd1–2 plants, whereas florets develop almost normally in the male inflorescence (the tassel). Detailed phenotypic analyses indicate that in bd1–2 mutants ear inflorescence formation initiates normally, however, the spikelet meristems do not proceed to form floret meristems. The ear spikelets, at anthesis, contain various numbers of spikelet-like meristems and glume-like structures. Furthermore, growth of branches from the base of the ear is often observed. Expression analyses show that the floral-specific MADS box genes Zea mays AGAMOUS1 ( ZAG1 ), ZAG2 and Zea mays MADS 2 ( ZMM2 ) are not expressed in ear florets in bd1–2 mutants, whereas their expression in tassel florets is similar to that of wild type. Taken together, these data indicate that the development from spikelet to floret meristem is differentially controlled in the ear and tassel in the monoecious grass species Zea mays , and that BRANCHED SILKLESS plays an important role in regulating the transition from spikelet meristem to floral meristem during the development of the female inflorescence of maize.  相似文献   

12.
Meristems may be determinate or indeterminate. In maize, the indeterminate inflorescence meristem produces three types of determinate meristems: spikelet pair, spikelet and floral meristems. These meristems are defined by their position and their products. We have discovered a gene in maize, indeterminate floral apex1 (ifa1) that regulates meristem determinacy. The defect found in ifa1 mutants is specific to meristems and does not affect lateral organs. In ifa1 mutants, the determinate meristems become less determinate. The spikelet pair meristem initiates more than a pair of spikelets and the spikelet meristem initiates more than the normal two flowers. The floral meristem initiates all organs correctly, but the ovule primordium, the terminal product of the floral meristem, enlarges and proliferates, expressing both meristem and ovule marker genes. A role for ifa1 in meristem identity in addition to meristem determinacy was revealed by double mutant analysis. In zea agamous1 (zag1) ifa1 double mutants, the female floral meristem converts to a branch meristem whereas the male floral meristem converts to a spikelet meristem. In indeterminate spikelet1 (ids1) ifa1 double mutants, female spikelet meristems convert to branch meristems and male spikelet meristems convert to spikelet pair meristems. The double mutant phenotypes suggest that the specification of meristems in the maize inflorescence involves distinct steps in an integrated process.  相似文献   

13.
The tassel seed mutations ts4 and Ts6 of maize cause irregular branching in its inflorescences, tassels, and ears, in addition to feminization of the tassel due to the failure to abort pistils. A comparison of the development of mutant and wild-type tassels and ears using scanning electron microscopy reveals that at least four reproductive meristem types can be identified in maize: the inflorescence meristem, the spikelet pair meristem, the spikelet meristem, and the floret meristem. ts4 and Ts6 mutations affect the fate of specific reproductive meristems in both tassels and ears. ts4 mutants fail to form spikelet meristems from spikelet pair meristems. Ts6 mutants are delayed in the conversion of certain spikelet meristems into floret meristems. Once floret meristems are established in both of these mutants, they form florets that appear normal but fail to undergo pistil abortion in the tassel. The abnormal branching associated with each mutant is suppressed at the base of ears, permitting the formation of normal, fertile spikelets. The classification of the different types of reproductive meristems will be useful in interpretation of gene expression patterns in maize. It also provides a framework for understanding meristem functions that can be varied to diversify inflorescence architectures in the Gramineae.  相似文献   

14.
Basic questions regarding the origin and evolution of grass (Poaceae) inflorescence morphology remain unresolved, including the developmental genetic basis for evolution of the highly derived outer spikelet organs. To evaluate homologies between the outer sterile organs of grass spikelets and inflorescence structures of nongrass monocot flowers, we describe expression patterns of APETALA1/FRUITFULL-like (AP1/FUL) and LEAFY HULL STERILE-like (LHS1) MADS-box genes in an early-diverging grass (Streptochaeta angustifolia) and a nongrass outgroup (Joinvillea ascendens). AP1/FUL-like genes are expressed only in floral organs of J. ascendens, supporting the hypothesis that they mark the floral boundary in nongrass monocots, and JaLHS1/OsMADS5 is expressed in the inner and outer tepals, stamen filaments and pistil. In S. angustifolia, SaFUL2 is expressed in all 11 (or 12) bracts of the primary inflorescence branch, but not in the suppressed floral bract below the abscission zone. In contrast, SaLHS1 is only expressed in bracts 6-11 (or 12). Together, these data are consistent with the hypotheses that (1) bracts 1-5 of S. angustifolia primary inflorescence branches and glumes of grass spikelets are homologous and that (2) the outer tepals of immediate grass relatives, bracts 6-8 of S. angustifolia, and the lemma/palea are homologous, although other explanations are possible.  相似文献   

15.
Isolation of a maize gene with strong homologies to the Arabidopsis floral organ identity gene APETALA2 has provided new insights to understanding the generation of architecture in grass inflorescences. Grass inflorescences are built of repeated units called spikelets, which consist of a pair of glumes (bracts) enclosing a cluster of one to as many as 40 flowers, the number depending on the species. The gene indeterminate spikelet (ids), isolated by Chuck and co-workers,(1) is involved in limiting the number of floral meristems produced by the spikelet meristem in maize inflorescences. Altered regulation of activity of ids homologues may be responsible for variation in flower number among different grasses. BioEssays 20 :789–793, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

16.
I Amaya  O J Ratcliffe    D J Bradley 《The Plant cell》1999,11(8):1405-1418
Plant species exhibit two primary forms of flowering architecture, namely, indeterminate and determinate. Antirrhinum is an indeterminate species in which shoots grow indefinitely and only generate flowers from their periphery. Tobacco is a determinate species in which shoot meristems terminate by converting to a flower. We show that tobacco is responsive to the CENTRORADIALIS (CEN) gene, which is required for indeterminate growth of the shoot meristem in Antirrhinum. Tobacco plants overexpressing CEN have an extended vegetative phase, delaying the switch to flowering. Therefore, CEN defines a conserved system controlling shoot meristem identity and plant architecture in diverse species. To understand the underlying basis for differences between determinate and indeterminate architectures, we isolated CEN-like genes from tobacco (CET genes). In tobacco, the CET genes most similar to CEN are not expressed in the main shoot meristem; their expression is restricted to vegetative axillary meristems. As vegetative meristems develop into flowering shoots, CET genes are downregulated as floral meristem identity genes are upregulated. Our results suggest a general model for tobacco, Antirrhinum, and Arabidopsis, whereby the complementary expression patterns of CEN-like genes and floral meristem identity genes underlie different plant architectures.  相似文献   

17.
At the onset of flowering, the Arabidopsis thaliana primary inflorescence meristem starts to produce flower meristems on its flank. Determination of floral fate is associated with changes in the growth pattern and expression of meristem identity genes and suppression of a subtending leaf called a bract. Here, we show a role in floral fate determination and bract suppression for the PUCHI gene, an AP2/EREBP family gene that has previously been reported to play roles in lateral root morphogenesis. Mutations in PUCHI cause partial conversion of flowers to inflorescences, indicating that PUCHI is required for flower meristem identity. PUCHI is transiently expressed in the early flower meristem and accelerates meristem bulging while it prevents the growth of the bract primordium. The function of PUCHI in floral fate determination and bract suppression overlaps that of the BLADE-ON-PETIOLE1 (BOP1) and BOP2 genes, which encode a pair of redundant regulatory proteins involved in various developmental processes, including leaf morphogenesis and flower patterning. We also show that PUCHI acts together with BOP1 and BOP2 to promote expression of LEAFY and APETALA1, two central regulators of floral meristem identity. Expression patterns of the PUCHI and BOP genes point to a role in spatial control of flower-specific activation of these meristem identity genes.  相似文献   

18.
In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and PNF interact with a subset of KNOTTED1-LIKE homeobox proteins including SHOOT MERISTEMLESS (STM). Genetic analyses show that these BLH proteins function with STM to specify flowers and internodes during inflorescence development. In this study, experimental evidence demonstrates that the specification of flower and coflorescence meristems requires the combined activities of FT-FD and STM. FT and FD also regulate meristem maintenance during inflorescence development. In plants with reduced STM function, ectopic FT and FD promote the formation of axillary meristems during inflorescence development. Lastly, gene expression studies indicate that STM functions with FT-FD and AGAMOUS-LIKE 24 (AGL24)-SUPPRESSOR OF OVEREXPRESSION OF CONTANS1 (SOC1) complexes to up-regulate flower meristem identity genes during inflorescence development.  相似文献   

19.
20.
Upon floral induction, the primary shoot meristem of an Arabidopsis plant begins to produce flower meristems rather than leaf primordia on its flanks. Assignment of floral fate to lateral meristems is primarily due to the cooperative activity of the flower meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER. We present evidence here that AP1 expression in lateral meristems is activated by at least two independent pathways, one of which is regulated by LFY. In lfy mutants, the onset of AP1 expression is delayed, indicating that LFY is formally a positive regulator of AP1. We have found that AP1, in turn, can positively regulate LFY, because LFY is expressed prematurely in the converted floral meristems of plants constitutively expressing AP1. Shoot meristems maintain an identity distinct from that of flower meristems, in part through the action of genes such as TERMINAL FLOWER1 (TFL1), which bars AP1 and LFY expression from the influorescence shoot meristem. We show here that this negative regulation can be mutual because TFL1 expression is downregulated in plants constitutively expressing AP1. Therefore, the normally sharp phase transition between the production of leaves with associated shoots and formation of the flowers, which occurs upon floral induction, is promoted by positive feedback interactions between LFY and AP1, together with negative interactions of these two genes with TFL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号