首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI.

Methods and Results

Hyperlipidemic and diabetic mice underwent carotid ligation to produce a macrophage-rich vascular lesion. In situ and ex vivo fluorescence imaging were performed at 48 hours after intravenous injection of FeCo/GC conjugated to Cy5.5 (n = 8, 8 nmol of Cy5.5/mouse). Significant fluorescence signal from FeCo/GC-Cy5.5 was present in the ligated left carotid arteries, but not in the control (non-ligated) right carotid arteries or sham-operated carotid arteries (p = 0.03 for ligated vs. non-ligated). Serial in vivo 3T MRI was performed at 48 and 72 hours after intravenous FeCo/GC (n = 6, 270 µg Fe/mouse). Significant T2* signal loss from FeCo/GC was seen in ligated left carotid arteries, not in non-ligated controls (p = 0.03). Immunofluorescence staining showed colocalization of FeCo/GC and macrophages in ligated carotid arteries.

Conclusions

FeCo/GC accumulates in vascular macrophages in vivo, allowing fluorescence and MR imaging. This multi-functional high-relaxivity nanoparticle platform provides a promising approach for cellular imaging of vascular inflammation.  相似文献   

2.
To determine whether reactive oxygen species (ROS) play an essential role in hypoxic pulmonary vasoconstriction (HPV) and the cellular locus of ROS production and action during HPV, we measured internal diameter (ID) at constant transmural pressure, lucigenin-derived chemiluminescence (LDCL), and electron paramagnetic resonance (EPR) spin adduct spectra in small distal porcine pulmonary arteries, and dichlorofluorescein (DCF) fluorescence in myocytes isolated from these arteries. Hypoxia (4% O2) decreased ID, increased DCF fluorescence, tended to increase LDCL, and in some preparations produced EPR spectra consistent with hydroxyl and alkyl radicals. Superoxide dismutase (SOD, 150 U/ml) or SOD + catalase (CAT, 200 U/ml) did not alter ID during normoxia but reduced or abolished the constriction induced by hypoxia. SOD also blocked HPV in endothelium-denuded arteries after restoration of the response by exposure to 10-10 M endothelin-1. Confocal fluorescence microscopy demonstrated that labeled SOD and CAT entered pulmonary arterial myocytes. SOD, SOD + CAT, and CAT blocked the increase in DCF fluorescence induced by hypoxia, but SOD + CAT and CAT also caused a stable increase in fluorescence during normoxia, suggesting that CAT diminished efflux of DCF from cells or oxidized the dye directly. We conclude that HPV required increased concentrations of ROS produced by and acting on pulmonary arterial smooth muscle rather than endothelium.  相似文献   

3.
During unilateral pregnancy in the guinea-pig there is loss of formaldehyde-induced fluorescence from the adrenergic nerves supplying the uterus and its vasculature. This loss occurs initially near the site of implantation at about Day 20 of gestation and spreads progressively. Implantation of wax pellets containing progesterone into the uterine lumen or the gastrocnemius muscle of virgin guinea-pigs for 7 days produced loss of fluorescence from all local adrenergic nerves. No diminution of fluorescence was seen when pellets containing oestradiol were substituted. Chronic denervation studies showed that the adrenergic axons supplying the uterus and its arteries originated from both the ovarian artery and the pelvic region. Our results suggest that loss of adrenergic fluorescence within the uterus during pregnancy is due to an effect of placental progesterone which is localized to the uterus because the high concentration of progesterone necessary to cause fluorescence loss is not attained in the systemic circulation.  相似文献   

4.
Chronic hypoxia (CH) increases pulmonary arterial endothelial nitric oxide (NO) synthase (NOS) expression and augments endothelium-derived nitric oxide (EDNO)-dependent vasodilation, whereas vasodilatory responses to exogenous NO are attenuated in CH rat lungs. We hypothesized that reactive oxygen species (ROS) inhibit NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined responses to the EDNO-dependent vasodilator endothelin-1 (ET-1) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP) in isolated lungs from control and CH rats in the presence or absence of ROS scavengers under normoxic or hypoxic ventilation. NOS was inhibited in lungs used for SNAP experiments to eliminate influences of endogenously produced NO. Additionally, dichlorofluorescein (DCF) fluorescence was measured as an index of ROS levels in isolated pressurized small pulmonary arteries from each group. We found that acute hypoxia increased DCF fluorescence and attenuated vasodilatory responses to ET-1 in lungs from control rats. The addition of ROS scavengers augmented ET-1-induced vasodilation in lungs from both groups during hypoxic ventilation. In contrast, upon NOS inhibition, DCF fluorescence was elevated and SNAP-induced vasodilation diminished in arteries from CH rats during normoxia, whereas acute hypoxia decreased DCF fluorescence, which correlated with augmented reactivity to SNAP in both groups. ROS scavengers enhanced SNAP-induced vasodilation in normoxia-ventilated lungs from CH rats similar to effects of hypoxic ventilation. We conclude that inhibition of NOS during normoxia leads to greater ROS generation in lungs from both control and CH rats. Furthermore, NOS inhibition reveals an effect of acute hypoxia to diminish ROS levels and augment NO-mediated pulmonary vasodilation.  相似文献   

5.
猪胃的动脉分布   总被引:5,自引:1,他引:4  
为了积累猪的解剖学资料以及为人胃的动脉分布提供比较解剖学依据,选用猪的离体内脏,将血管注射乳胶研究胃的动脉分布。结果表明,胃左动脉分为四种类型,来自脾动脉基部的A型最多(50.00%);憩室动脉分为三种类型,来自脾动脉的A型也最多(84.38%);胃十二指肠动脉有六种类型,在第一肝固有动脉之后分出的A型最多(40.63%);胃右动脉有七种类型,在第二肝固有动脉之后分出的A型最多(43.75%);胃  相似文献   

6.
The arterial supply to the right hemiliver was studied in 80 liver casts. The arteries were divided into 10 groups according to their origin and branching pattern. The right hemiliver was supplied by one artery in 96% of cases and by two arteries in 4%. When there was only one artery it originated from the proper hepatic artery in 73/77 cases and from the superior mesenteric artery in 4/77 cases. The replacing right hepatic artery which originated from the superior mesenteric vessel supplied the whole right hemiliver in 5% of cases. The incomplete replacing right hepatic artery which supplied only a part of the right hemiliver was found in 4% of cases. The anterior section (segments 5 and 8) was supplied by one artery in 61%, by two arteries in 30% and by three arteries in 9% of cases. The posterior section (segments 6 and 7) was supplied by one artery in 66%, by two arteries in 31% and by three arteries in 3% of cases. Segments 5 and 7 were predominantly supplied by one artery, whereas segments 6 and 8 by two arteries.  相似文献   

7.
This work aimed to establish the lineage of cells similar to the interstitial cells of Cajal (ICC), the arterial ICC-like (AIL) cells, which have recently been described in resistance arteries, and to study their location in the artery wall. Segments of guinea-pig mesenteric arteries and single AIL cells freshly isolated from them were used. Confocal imaging of immunostained cells or segments and electron microscopy of artery segments were used to test for the presence and cellular localization of selected markers, and to localize AIL cells in intact artery segments. AIL cells were negative for PGP9.5, a neural marker, and for von Willebrand factor (vWF), an endothelial cell marker. They were positive for smooth muscle alpha-actin and smooth muscle myosin heavy chain (SM-MHC), but expressed only a small amount of smoothelin, a marker of contractile smooth muscle cells (SMC), and of myosin light chain kinase (MLCK), a critical enzyme in the regulation of smooth muscle contraction. Cell isolation in the presence of latrunculin B, an actin polymerization inhibitor, did not cause the disappearance of AIL cells from cell suspension. The fluorescence of basal lamina protein collagen IV was comparable between the AIL cells and the vascular SMCs and the fluorescence of laminin was higher in AIL cells compared to vascular SMCs. Moreover, cells with thin processes were found in the tunica media of small resistance arteries using transmission electron microscopy. The results suggest that AIL cells are immature or phenotypically modulated vascular SMCs constitutively present in resistance arteries.  相似文献   

8.
Tetraphenylporphinesulfonate (TPPS), a synthetic, nonnaturally occurring porphine derivative, was administered parenterally to tumor bearing rats and its in vivo localization was studied with fluorescence microscopy. TPPS was selectively localized in elastica and eosinophilic leukocytes, but not in other tissue sites rich in basic protein. The elastica of the aorta and medium sized arteries, as well as elastic fibers of the subendocardium, paratracheal connective tissue and bronchial walls showed the strongest red fluorescence. The intensity of fluorescence in these sites corresponded with the degree of sulfonation of the TPPS. The tumors showed moderate red fluorescence diffusely in the cytoplasm.  相似文献   

9.
The course of regeneration of aminergic nerves in rat cerebral arteries was studied by means of histochemical methods, after uni- or bilateral cervical sympathectomy. Degeneration of aminergic nerves started on day 1 and was complete between days 3 and 7 after surgery. Between weeks 4 and 6, regenerating nerves started to appear from the proximal internal carotid artery. Regenerated aminergic nerve fibres were generally unbeaded and intensity of fluorescence was weak. The circular nerves appeared earlier than the longitudinal ones. The number of regenerating nerves reached the maximum, between months 9 and 12, at about half the normal level. AChE activity of the cerebral arteries showed no significant changes at any stage.  相似文献   

10.
The arterial supply to the left hemiliver was studied in 70 liver casts. The arteries were divided into 15 groups according to their origin and branching pattern. The left hemiliver was supplied by one artery in 53% of cases, by two arteries in 40% and by three arteries in 7%. The left hepatic artery, which originated from the proper hepatic artery, supplied all three left segments in 39% of specimens. The replacing left hepatic artery, which originated from the left gastric artery, supplied the whole left hemiliver in 3% of cases. The incomplete, replacing left hepatic artery supplied segments 2, 3 and a part of segment 4 in 6% of cases, and only segments 2 and 3 in 11%. There was one segmental artery for segment 2 in 86%, and two in 14%. Segment 3 was supplied by one artery in 87%, and by two in 13%. Segment 4 was supplied by one artery in 39% of cases, by two arteries in 43%, by three in 14% and by four arteries in 4%.  相似文献   

11.
Although previous studies demonstrated beneficial effects of estrogen on cardiovascular function, the Women's Health Initiative has reported an increased incidence of coronary heart disease and stroke in postmenopausal women taking hormone replacement therapy. The objective of the present study was to identify a molecular mechanism whereby estrogen, a vasodilatory hormone, could possibly increase the risk of cardiovascular disease. Isometric contractile force recordings were performed on endothelium-denuded porcine coronary arteries, whereas molecular and fluorescence studies identified estrogen signaling molecules in coronary smooth muscle. Estrogen (1-1,000 nM) relaxed arteries in an endothelium-independent fashion; however, when arteries were pretreated with agents to uncouple nitric oxide (NO) production from NO synthase (NOS), estrogen contracted coronary arteries with an EC(50) of 7.3 +/- 4 nM. Estrogen-induced contraction was attenuated by reducing superoxide (O(2)(-)). Estrogen-stimulated O(2)(-) production was detected in NOS-uncoupled coronary myocytes. Interestingly, only the type 1 neuronal NOS isoform (nNOS) was detected in myocytes, making this protein a likely target mediating both estrogen-induced relaxation and contraction of endothelium-denuded coronary arteries. Estrogen-induced contraction was completely inhibited by 1 muM nifedipine or 10 muM indomethacin, indicating involvement of dihydropyridine-sensitive calcium channels and contractile prostaglandins. We propose that a single molecular mechanism can mediate the dual and opposite effect of estrogen on coronary arteries: by stimulating type 1 nNOS in coronary arteries, estrogen produces either vasodilation via NO or vasoconstriction via O(2)(-).  相似文献   

12.
Brief, spatially localized Ca(2+) transients occur in the smooth muscle adjacent to perivascular nerves of small arteries during neurogenic contractions. We named these "junctional Ca(2+) transients" (jCaTs) and postulated that they arose from Ca(2+) entering smooth muscle cells through P2X(1) receptors activated by neurally released ATP. Nevertheless, the lack of potent, subtype-selective P2X-receptor antagonists made determining the exact molecular identity of the channels difficult. Here we used small, pressurized mesenteric arteries from P2X(1)-receptor-deficient mice (KO) to test the hypothesis that jCaTs arise from Ca(2+) entering the smooth muscle cell via P2X(1) receptors. In wild-type (WT) arteries, confocal microscopy of fluo-4 fluorescence during electrical field stimulation (EFS) of perivascular sympathetic nerves revealed jCaTs in the smooth muscle cells adjacent to the perivascular nerves, similar to those reported previously in rat arteries, and alpha-latrotoxin (2.5 nM) markedly increased the frequency of "spontaneous" jCaTs. In the KO arteries, however, neither EFS nor alpha-latrotoxin elicited any jCaTs. A potent P2X-receptor agonist, alpha,beta-methylene ATP (10.0 microM), elicited strong contractions and increased intracellular Ca(2+) concentration in WT arteries but elicited neither in KO arteries. A biphasic vasoconstriction in response to EFS was observed in WT arteries. In KO arteries, however, the initial rapid, transient component of the biphasic vasoconstriction was absent. The data support the hypothesis that jCaTs represent Ca(2+) that enters the smooth muscle cells through P2X(1) receptors activated by neurally released ATP and that this Ca(2+) is involved in the initial rapid component of the sympathetic neurogenic contraction.  相似文献   

13.
Normal pregnancy is characterized by an increased uterine blood flow due to growth and remodeling of the maternal uterine vasculature and enhanced vasodilation of the uterine arteries. The objective of the present study was to examine the role of endothelial cell Ca2+ signaling in augmented endothelium-mediated vasodilation of uteroplacental arteries in late pregnancy. We performed fura-2-based measurements of the intracellular Ca2+ concentration ([Ca2+]i) in the cytoplasm of endothelial cells simultaneously with diameter in pressurized uterine arteries from nonpregnant (NP) and late-pregnant (LP) rats. Basal levels of endothelial cell [Ca2+]i were higher in arteries from LP rats compared with NP controls. Withdrawal of extracellular Ca2+ resulted in a decrease in the level of basal [Ca2+]i that was significantly larger in arteries of LP than NP rats. The rate of Mn2+ -induced quenching of fura-2 fluorescence was significantly elevated in late pregnancy, implicating augmented Ca2+ influx as a cause of increased basal levels of [Ca2+]i in endothelial cells. Elevation of intraluminal pressure resulted in a transient increase in endothelial [Ca2+]i that was markedly potentiated in late gestation. ACh-induced [Ca2+]i and vasodilator responses were significantly augmented in arteries of LP compared with NP rats and were abolished by BAPTA treatment, demonstrating a critical role of [Ca2+]i elevation in the production of endothelium-derived vasodilators. Together, these results indicate that late pregnancy is a state of enhanced basal and stimulated Ca2+ signaling in endothelial cells of uterine vessels, which may represent an important underlying mechanism for augmented vasodilation in the maternal uterine circulation.  相似文献   

14.
Tetraphenylporphinesulfonate (TPPS), a synthetic, nonnaturally occurring porphine derivative, was administered parenterally to tumor bearing rats and its in vivo localization was studied with fluorescence microscopy. TPPS was selectively localized in elastica and eosinophilic leukocytes, but not in other tissue sites rich in basic protein. The elastica of the aorta and medium sized arteries, as well as elastic fibers of the subendocardium, paratracheal connective tissue and bronchial walls showed the strongest red fluorescence. The intensity of fluorescence in these sites corresponded with the degree of sulfonation of the TPPS. The tumors showed moderate red fluorescence diffusely in the cytoplasm.  相似文献   

15.
The previously described rabbit 2.3-kilobase smooth muscle myosin haevy-chain (SMHCwt) promoter targets gene expression in transgenic animals to vascular smooth muscle cells (SMCs), including coronary arteries. Therefore, SMHCwt is thought to provide a promising tool for human gene therapy. In the present study, we examined tissue specificity and expression levels of wild-type and mutated SMHC promoters within the system of high-capacity adenoviral (hcAd) vectors. SMHCwt and a series of SMHC promoter deletion mutants, a triple promoter as well as a cytomegalovirus-SMHC hybrid promoter driving the enhanced green fluorescence protein (EGFP) reporter gene were transiently transfected into aortic SMCs. Fluorescence intensity was measured by flow cytometric analysis. Consecutively, hcAd vectors were constructed with the SMHCwt and the mutant promoter with the highest fluorescence activity. Levels of EGFP expression were determined after transduction of SMCs derived from human coronary arteries. For analysis of tissue specificity, embryonic stem (ES) cell-derived SMCs (ESdSMHCs) and cardiomyocytes, (ESdCMs) were used. In comparison with SMHCwt, only the SMHCdel94 mutant lacking a 94-bp GC-rich element revealed a 1.5-fold increased fluorescence activity. Transduction of primary SMCs of human coronary arteries with hcAd vectors confirmed an increased EGFP expression driven by the SMHCdel94 promoter. In ES-cell-derived embryoid bodies, SMHCwt was exclusively active in transduced ESdSMCs. In contrast, expression of SMHCdel94 was also found in ESdCMs and other nontarget cells of the embryoid body. The tissue-specific rabbit SMHCwt promoter seems to be suitable for adenoviral gene transfer in SMCs of human coronary arteries and deletion of a 94-bp negative cis-acting GC-rich element results in loss of specificity. These authors contributed equally to the study.  相似文献   

16.
To examine the reaction of tumour arteries to endothelin-1, we obtained arteries supplying blood flow to colorectal tumours from patients, as well as mesenteric arteries supplying the normal colon tissue from the same patients and mesenteric arteries from patients without a colorectal tumour pathology. The contraction in response to endothelin-1 and the relaxation produced by bradykinin was recorded in each of these arteries. Accordingly, the sensitivity to endothelin-1 but not the maximal response, was higher in the arteries supplying colorectal tumours than in mesenteric arteries supplying normal colon or in mesenteric arteries from patients with no tumour pathology. The contraction produced by endothelin-1 was not modified by exposure to L-NAME or meclofenamate in arteries supplying both the tumour and the normal colon. The endothelin ET(A) andET(B) receptors were expressed similarly in arteries supplying the tumour or normal colon. However, the antagonist of the endothelin ET(B) receptors BQ788 (10(-6) M) decreased the contractions in the arteries supplying the tumour but not in those supplying the normal colon. By contrast, the antagonist of endothelin ET(A) receptors BQ123 (10(-6) M) reduced the contraction equally in both these types of arteries. Likewise, in arteries precontracted with U46619, the relaxation in response to bradykinin was similar in all three types of arteries. Together, these results suggest that the arteries supplying human colorectal tumours are more sensitive to endothelin-1, which could be due to the enhanced activity of endothelin ET(B) receptors in the absence of any change in the modulatory effect of nitric oxide or prostanoids in the arterial response to this peptide.  相似文献   

17.
Vascular interstitial cells (VICs) are non‐contractile cells with filopodia previously described in healthy blood vessels of rodents and their function remains unknown. The objective of this study was to identify VICs in human arteries and to ascertain their role. VICs were identified in the wall of human gastro‐omental arteries using transmission electron microscopy. Isolated VICs showed ability to form new and elongate existing filopodia and actively change body shape. Most importantly sprouting VICs were also observed in cell dispersal. RT‐PCR performed on separately collected contractile vascular smooth muscle cells (VSMCs) and VICs showed that both cell types expressed the gene for smooth muscle myosin heavy chain (SM‐MHC). Immunofluorescent labelling showed that both VSMCs and VICs had similar fluorescence for SM‐MHC and αSM‐actin, VICs, however, had significantly lower fluorescence for smoothelin, myosin light chain kinase, h‐calponin and SM22α. It was also found that VICs do not have cytoskeleton as rigid as in contractile VSMCs. VICs express number of VSMC‐specific proteins and display features of phenotypically modulated VSMCs with increased migratory abilities. VICs, therefore represent resident phenotypically modulated VSMCs that are present in human arteries under normal physiological conditions.  相似文献   

18.
Vascular smooth muscle cells (VSMCs) are important targets in the treatment of atherosclerosis. However, the arterial media, where the majority of VSMCs reside, have proven to be a difficult target for drug/gene delivery. We have demonstrated that ultrasound enhances drug/gene delivery to VSMCs in vitro by using echogenic immunoliposomes (ELIPs) as the vector. This study aimed to evaluate whether ultrasound can similarly enhance the delivery of an agent to VSMCs, particularly within the arterial media, in vivo, using ELIP. Anti–smooth-muscle cell actin-conjugated calcein-loaded ELIP were injected into the peripheral arteries of Yucatan miniswine (n?=?8 arterial pairs). The right-sided porcine arteries were treated with 1-MHz continuous-wave ultrasound at a peak-to-peak pressure amplitude of 0.23?±?0.05?MPa for 2 minutes. The contralateral arteries served as controls. Arteries were harvested after 30 minutes and imaged with fluorescence microscopy. Image data were converted to grayscale and analyzed by using computer-assisted videodensitometry. There was significant improvement in calcein uptake in all three arterial layers in the arteries exposed to ultrasound (>?300%). This enhanced uptake was site specific and appeared limited to the ultrasound-treated arterial segment. We have demonstrated enhanced delivery of a small molecule to VSMCs in all arterial wall layers, particularly the arterial media, using ultrasound and targeted ELIP. The combined effect of ultrasound exposure and ELIP as a contrast agent and a drug/gene-bearing vector has the potential for site-specific therapy directed at VSMC function.  相似文献   

19.
The present study tested the hypothesis that ceramide, a sphingomylinase metabolite, serves as an second messenger for tumor necrosis factor-alpha (TNF-alpha) to stimulate superoxide production, thereby decreasing endothelium-dependent vasorelaxation in coronary arteries. In isolated bovine small coronary arteries, TNF-alpha (1 ng/ml) markedly attenuated vasodilator responses to bradykinin and A-23187. In the presence of N(G)-nitro-L-arginine methyl ester, TNF-alpha produced no further inhibition on the vasorelaxation induced by these vasodilators. With the use of 4,5-diaminofluorescein diacetate fluorescence imaging analysis, bradykinin was found to increase nitric oxide (NO) concentrations in the endothelium of isolated bovine small coronary arteries, which was inhibited by TNF-alpha. Pretreatment of the arteries with desipramine (10 microM), an inhibitor of acidic sphingomyelinase, tiron (1 mM), a superoxide scavenger, and polyethylene glycol-superoxide dismutase (100 U/ml) largely restored the inhibitory effect of TNF-alpha on bradykinin- and A-23187-induced vasorelaxation. In addition, TNF-alpha activated acidic sphingomyelinase and increased ceramide levels in coronary endothelial cells. We conclude that TNF-alpha inhibits NO-mediated endothelium-dependent vasorelaxation in small coronary arteries via sphingomyelinase activation and consequent superoxide production in endothelial cells.  相似文献   

20.
Acetylcholine regulates perfusion of numerous organs via changes in local blood flow involving muscarinic receptor-induced release of vasorelaxing agents from the endothelium. The purpose of the present study was to determine the role of M?, M?, and M? muscarinic acetylcholine receptors in vasodilation of small arteries using gene-targeted mice deficient in either of the three receptor subtypes (M1R(-/-), M3R(-/-), or M5R(-/-) mice, respectively). Muscarinic receptor gene expression was determined in murine cutaneous, skeletal muscle, and renal interlobar arteries using real-time PCR. Moreover, respective arteries from M1R(-/-), M3R(-/-), M5R(-/-), and wild-type mice were isolated, cannulated with micropipettes, and pressurized. Luminal diameter was measured using video microscopy. mRNA for all five muscarinic receptor subtypes was detected in all three vascular preparations from wild-type mice. However, M(3) receptor mRNA was found to be most abundant. Acetylcholine produced dose-dependent dilation in all three vascular preparations from M1R(-/-), M5R(-/-), and wild-type mice. In contrast, cholinergic dilation was virtually abolished in arteries from M3R(-/-) mice. Deletion of either M?, M?, or M? receptor genes did not affect responses to nonmuscarinic vasodilators, such as substance P and nitroprusside. These findings provide the first direct evidence that M? receptors mediate cholinergic vasodilation in cutaneous, skeletal muscle, and renal interlobar arteries. In contrast, neither M? nor M? receptors appear to be involved in cholinergic responses of the three vascular preparations tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号