首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Brassica oleracea seeds were sterilized by gamma radiation and sodium hypochlorite washing. Xanthomonas campestris was inoculated into the seeds by incubating, under vacuum, a suspension of the bacteria with the seeds. After thorough washings with sterile distilled water, the seeds retained about 13 000 cells per seed. The seeds were maintained at 4°C during 21 months, during which the viability of the bacteria and their capacity to produce xantham gum in shake flasks, were evaluated. Bacterial viability showed oscillations but after 20 months it was 10% of the initial. When these seeds were used as a pre-inoculum for a culture to produce xanthan, the final polymer concentration increased slightly with time of seed storage and the final broth viscosity was fairly constant. The specific polymer production (per weight of final bacterial cells) increased about three-fold after 21 months of experimentation. The method, besides being able to produce xantham in quantity and quality, has the advantages of an easy inoculation procedure, no need for transfers, less contamination risk and improved growth rate of the bacteria in the inoculation medium. Correspondence to: E. Galindo  相似文献   

2.
T Murata  T W Secomb 《Biorheology》1989,26(2):247-259
The flow properties of aggregating red cell suspensions flowing at low rates through vertical tubes with diameters from 30 microns to 150 microns are analyzed using a theoretical model. Unidirectional flow is assumed, and the distributions of velocity and red cell concentration are assumed to be axisymmetric. A three-layer approximation is used for the distribution of red cells, with a cylindrical central core of aggregated red cells moving with uniform velocity, a cell-free marginal layer near the tube wall, and an annular region located between the core and the marginal layer containing suspended non-aggregating red cells. This suspension is assumed to behave approximately as a Newtonian fluid whose viscosity increases exponentially with red cell concentration. Physical arguments concerning the mechanics of red cell attachment to, and detachment from the aggregated core lead to a kinetic equation for core formation. From this kinetic equation and the equation for conservation of red cell volume flux, a relationship between core radius and pressure gradient is obtained. Then the relative viscosity is calculated as a function of pseudo-shear rate. At low flow rates, it is shown that the relative viscosity decreases with decreasing flow and that the dependence of relative viscosity on shear rates is more pronounced in larger tubes. It is also found that the relative viscosity decreases with increasing aggregation tendency of suspension. These theoretical predictions are in good qualitative and quantitative agreement with experimental results.  相似文献   

3.
To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy.  相似文献   

4.
To develop three-dimensional (3D) cytotoxicity models further, microcystin-induced cytoskeletal disruption was tested in two different models of multicellular hepatocyte aggregate formation (hepatospheroids). Rat hepatocyte suspensions were seeded either onto poly(2-hydroxyethylmethacrylate)-treated culture wells (poly-HEMA) or in a rotating wall vessel (RWV) device which provides minimal shear forces and enhances differentiated 3D growth.Ninety percent of spheroids forming on poly-HEMA tended to fuse and form nonhomogeneous multilobular structures by day 4 of incubation. In contrast, spheroids cultured in the low-shear environment formed homogeneous aggregates that averaged 126±10 m diameter in size at day 7. Microcystin-LR (10–6 mol/L) was put into contact (90 min in serum- free medium) with hepatocyte suspensions and spheroids formed in both systems for 1, 4 or 7 days. As already described, microcystin-LR (after 90 min), induced cytoskeletal disruptions (blebs) in 98% of the isolated primary hepatocytes maintained in suspension. In 3D cultures, blebs were detected only on poly-HEMA nonhomogeneous early prespheroids. All other mature spheroids (poly- HEMA or RWV) exposed to the toxin did not exhibit obvious morphological signs of toxicity. Moreover, microcystin-LR pre- incubation with hepatocyte suspension prevented the formation of conventional spheroids. In conclusion, the low-shear, simulated- microgravity environment generated high yields of regularly engineered spheroids. In both models, progressive resistance of mature spheroids to microcystin-LR-induced cell deformation developed with time in culture. Microcystin-LR inhibition of the formation of rat hepatospheroids in isolated hepatocyte suspension could be used as a complementary biological assay for detection of the presence of biologically active microcystin-LR in water samples.  相似文献   

5.
While traditional cell culture methods have relied on growing cells as monolayers, three-dimensional (3D) culture systems can provide a convenient in vitro model for the study of complex cell–cell and cell–matrix interactions in the absence of exogenous substrates and may benefit the development of regenerative medicine strategies. In this study, mesenchymal stem cell (MSC) spheroids, or “mesenspheres”, of different sizes, were formed using a forced aggregation technique and maintained in suspension culture for extended periods of time thereafter. Cell proliferation and differentiation potential within mesenspheres and dissociated cells retrieved from spheroids were compared to conventional adherent monolayer cultures. Mesenspheres maintained in growth medium exhibited no evidence of cell necrosis or differentiation, while mesenspheres in differentiation media exhibited differentiation similar to conventional 2D culture methods based on histological markers of osteogenic and adipogenic commitment. Furthermore, when plated onto tissue culture plates, cells that had been cultured within mesenspheres in growth medium recovered morphology typical of cells cultured continuously in adherent monolayers and retained their capacity for multi-lineage differentiation potential. In fact, more robust matrix mineralization and lipid vacuole content were evident in recovered MSCs when compared to monolayers, suggesting enhanced differentiation by cells cultured as 3D spheroids. Thus, this study demonstrates the development of a 3D culture system for mesenchymal stem cells that may circumvent limitations associated with conventional monolayer cultures and enhance the differentiation potential of multipotent cells.  相似文献   

6.
Mammalian cells growing as multicell spheroids, an in vitro model of tumor microregions, have been shown previously to be more resistant than single cells from monolayer cultures to killing by ionizing radiation, hyperthermia, ultrasound, and chemotherapeutic drugs. Although the mechanisms by which cells in spheroids acquire these increased resistances are unknown, available evidence has indicated that intercellular contact mediates the process for ionizing radiation. This investigation was undertaken to evaluate the role of intercellular contact produced during growth of small spheroids on the sensitivity of EMT6/Ro mouse mammary tumor cells to moderate hyperthermia. Increased thermoresistance developed in small spheroids (approximately 70 micron diameter, 25 cells/spheroid), as measured by colony formation, after exposures to different temperatures in the range of 37 to 45 degrees C for periods less than or equal to 2 hr and at 42.5 degrees C for less than or equal to 8 hr. Experiments were performed to determine the relative contributions to this increased thermoresistance of 1) the extent of intercellular contact in spheroids of different cellular multiplicities, 2) differences in membrane damage influenced by trypsin heat treatment sequence, and 3) physiological changes associated with growth of cells as spheroids in suspension compared to monolayer culture. Treatment with trypsin prior to heating sensitized cells to killing by hyperthermia but did not account for the differential thermoresistance between cells from spheroids and monolayers. Spheroid multiplicity in the range of 1.16 to 76.2 cells/spheroid had no significant effect on cell survival after hyperthermia. However, cells grown in spinner suspension culture were more thermoresistant than cells from monolayer cultures and nearly as thermoresistant as cells in spheroids. From these data we conclude that the greater thermoresistance of EMT/Ro cells in spheroids is the result of cellular physiological changes associated with growth in suspension and is not mediated by intercellular contact.  相似文献   

7.
The fields of regenerative medicine and tissue engineering require large‐scale manufacturing of stem cells for both therapy and recombinant protein production, which is often achieved by culturing cells in stirred suspension bioreactors. The rheology of cell suspensions cultured in stirred suspension bioreactors is critical to cell growth and protein production, as elevated exposure to shear stress has been linked to changes in growth kinetics and genetic expression for many common cell types. Currently, little is understood on the rheology of cell suspensions cultured in stirred suspension bioreactors. In this study, we present the impact of three common cell culture parameters, serum content, cell presence, and culture age, on the rheology of a model cell line cultured in stirred suspension bioreactors. The results reveal that cultures containing cells, serum, or combinations thereof are highly shear thinning, whereas conditioned and unconditioned culture medium without serum are both Newtonian. Non‐Newtonian viscosity was modeled using a Sisko model, which provided insight on structural mechanisms driving the rheological behavior of these cell suspensions. A comparison of shear stress estimated by using Newtonian and Sisko relationships demonstrated that assuming Newtonian viscosity underpredicts both mean and maximum shear stress in stirred suspension bioreactors. Non‐Newtonian viscosity models reported maximum shear stresses exceeding those required to induce changes in genetic expression in common cell types, whereas Newtonian models did not. These findings indicate that traditional shear stress quantification of cell or serum suspensions is inadequate and that shear stress quantification methods based on non‐Newtonian viscosity must be developed to accurately quantify shear stress.  相似文献   

8.
Spheroids are widely used in biology because they provide an in vitro 3-dimensional (3D) model to study proliferation, cell death, differentiation, and metabolism of cells in tumors and the response of tumors to radiotherapy and chemotherapy. The methods of generating spheroids are limited by size heterogeneity, long cultivation time, or mechanical accessibility for higher throughput fashion. The authors present a rapid method to generate single spheroids in suspension culture in individual wells. A defined number of cells ranging from 1000 to 20,000 were seeded into wells of poly-HEMA-coated, 96-well, round-or conical-bottom plates in standard medium and centrifuged for 10 min at 1000 g. This procedure generates single spheroids in each well within a 24-h culture time with homogeneous sizes, morphologies, and stratification of proliferating cells in the rim and dying cells in the core region. Because a large number of tumor cell lines form only loose aggregates when cultured in 3D, the authors also performed a screen for medium additives to achieve a switch from aggregate to spheroid morphology. Small quantities of the basement membrane extract Matrigel, added to the culture medium prior to centrifugation, most effectively induced compact spheroid formation. The compact spheroid morphology is evident as early as 24 h after centrifugation in a true suspension culture. Twenty tumor cell lines of different lineages have been used to successfully generate compact, single spheroids with homogenous size in 96-well plates and are easily accessible for subsequent functional analysis.  相似文献   

9.
The steady flow viscosity at shear rates 0 to 120 sec-1 and dynamic viscoelasticity at frequencies 0.02 to 0.8 Hz were determined for aqueous suspensions of uniform polystyrene microspheres of 1.0 micron diameter. Rheological properties of the microsphere suspensions were Newtonian for particle concentrations up to 32%. By introducing dextran and calcium chloride into the particle suspensions, non-Newtonian behavior was produced similar to that observed for human blood. The cooperative effects of dextran and calcium ions promoted aggregation of particles at a concentration as low as 12%. Thus, a suspension of uniform sized spherical polystyrene particles in aqueous solution of dextran may be made to mimic blood by controlling the surface charge on the polystyrene spheres using addition of calcium ions to the medium.  相似文献   

10.
We have previously proposed the osmofiltration method based on a modified Hanss hemorheometer to analyze distributions of erythrocytes in their ability to pass through membrane filters with 3 microns pores. Upon decrease in medium osmolality (u) the erythrocyte volume increases. When cell volume becomes V = Vcr at u = ucr, such cell loses its ability to pass through a 3 microns pore. The flow rate of erythrocyte suspension containing cells with different ucr through a filter gradually decreases with decreasing medium osmolality. This rate becomes zero at some u = omega, when the number of non-filterable cells in the applied sample approaches the number of pores in filter. Experimental determination of the dependencies of the filtration rate on medium osmolality for various hematocrit values allows to obtain omega for each hematocrit and, thereby, to assess the distribution of erythrocytes in ucr. Here, we propose a simplified version of this method, which allows screening of the erythrocytes in heterogeneous suspensions for the distribution in ucr by measuring omega for only two hematocrit values, 0.1% and 1%. Applications of the proposed method are exemplified by analysing the erythrocyte populations of healthy donors, of patients with microspherocytosis, hemochromatosis and normal erythrocyte populations in an acidic environment.  相似文献   

11.
Plant cell suspension culture rheology   总被引:3,自引:0,他引:3  
The results of rheological measurements on 10 different plant cell suspension cultures are presented. Nicotiana tabacum (tobacco) suspension cultures grown in serial batch subculture display high viscosity and power law rheology. This "undesirable" rheology is shown to be a result of elongated cell morphology. The rheology of Papaver somniferum (poppy) cell suspensions is quite different; poppy suspensions behave as Newtonian fluids and have relatively low viscosity (less than 15 cP) at fresh cell densities up to 250 g/L. This flow behavior can be attributed to a lack of elongation in batch-grown poppy cells. A simple correlation for the viscosity as a function of cell density is developed for poppy suspensions up to 300 g fresh weight (FW)/L. It is shown that tobacco cells do not elongate when grown in semicontinuous culture (daily media replacement). These semicontinuously cultured cells have rheological behavior that is indistinguishable from that of poppy, further confirming the dependence of rheology on plant cell morphology. The rheology of a wide variety of other plant suspensions at 200 g FW/L is presented. Most cell suspensions, including soybean, cotton, bindweed, and potato, display low viscosities similar to poppy suspensions. Only carrot and atriplex exhibit slight pseudoplastic behavior which corresponded to a slight degree of cellular elongation for these cultures. This demonstrates that complex rheology associated with elongated cell morphology is much less common than low-viscosity Newtonian behavior. High viscosity in plant cell culture is therefore not an intrinsic characteristic of plant cells but, instead, is a result of the ability to grow cultures to extremely high cell densities due to low biological oxygen demand. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
Callus and suspension cultures of Theobroma cacao L., initiatedfrom immature cotyledons of beans from pods harvested 120–130days after pollination were established. A modified B-5 or Murashige—Skoogagar medium sustained growth of callus without loss of vigourafter each sub-culture. A 15-fold weight increase occurred duringthe 4 week culture periods at 30 ± 1 °C. Coconutwater improved callus growth substantially. The optimum hormonalconcentrations for growth of suspensions were 0.5 mg 1–1of 2, 4-dichlorophenoxyacetic acid and 0.1 mg I–1 of kinetinin a Murashige—Skoog basal medium liquid medium. The optimumtemperature for growth of suspensions was 25–30 °C.The cell number and cell mass of suspensions increased 20-foldin 14 days. No organogenesis or embryogenesis was observed. Theobroma cacao L., acao, cell culture, suspension culture, tissue culture.  相似文献   

13.
Multicellular spheroids were grown from cells derived directly from a human melanoma xenograft propagated in athymic mice. The histological appearance of the spheroids was similar to that of the parent xenograft. The spheroids were heated in culture medium (42.5-44.5 degrees C); growth delay and single cell survival measured in soft agar were used as end points. There was a good correlation between the results obtained with these two end points, indicating that growth delay depended mainly on cell survival. Large spheroids (200 +/- 12 microns in diameter) were found to be more heat sensitive than small ones (100 +/- 5 microns in diameter), probably because the physiological conditions in large spheroids were more favorable for cell inactivation. The cells were more resistant when heated as spheroids than as single cells. This effect was not a secondary effect of differences in cell-cycle distribution. Spheroids were also found to be more heat resistant than xenografted tumors. In the tumors, heat treatment caused vascular damage which resulted in delayed cell death due to hypoxia and/or nutrient deficiency. It is concluded that spheroids seem well suited for studies of primary heat-induced cytotoxic effects. However, they appear not to mirror the complex heat response of tumors since that response also includes secondary effects, related to heat-induced reduced perfusion.  相似文献   

14.
The results of filtration assays provide estimates of the deformability of erythrocytes averaged over the entire suspension. These assays do not distinguish whether the entire population or only its small fraction exhibits abnormal rheological properties. We developed a simple method using a filtrometer to determine the percentage of non-filterable (under given conditions) cells in the erythrocyte suspension. Membrane filters made of a polyethylene terphthalate film had the mean pore diameter of 3.1 microns and the length of cylindrical micropores of 7 microns. The buffer flow rate tb depends on the number of free pores in a filter. The plot of the number of pores clogged by non-filterable cells versus the total number of erythrocytes passed through the filter had a linear portion whose slope represents the relative content Z of non-filterable cells in the suspension. We determined Z for various medium osmolarities u. These data were used to derive the distribution of erythrocytes in ucr, the value of u at which an erythrocyte cannot pass through a pore of a given filter because of geometric limitations. The distribution maximum corresponded to 190-200 mOsm/kg for erythrocytes from the normal blood. This means that normal erythrocytes have the median values of their surface area and area-to-volume ratio of 155-151 microns2 and 1.72-1.68 microns-1, respectively. The half-width of the distribution was approximately 30 mOsm/kg. This finding suggests that the normal blood contains a certain fraction of erythrocytes with a decreased area-to-volume ratio. Our results showed that the distribution is altered in various forms of anemia and in ATP-depleted erythrocyte suspensions.  相似文献   

15.
Xanthan is a important biopolymer for commercial purpose and it is produced in two stages by Xanthomonas campestris. In the first one, the bacterium is cultivated in the complex medium enriched in nitrogen and the biomass produced is used as inoculum for the next stage in which the gum is produced in another medium. In this work a new medium for the first stage is proposed in place of currently used YM medium. Different formulated growth media were studied and the correspondent biomass produced was analysed as inoculum for the second stage. The inoculum and gum were produced by batch process in shaker at 27°C in pH 6.0 and at 30°C in pH 7.0, respectively. The gum was precipitated with ethanol (3:1 v/v). The dryed biomass and xathan gum produced were determined by drying in oven at 105 and 40°C, respectively. The viscosity of the fermentation broth and 1% gum solution in water were determined in Brookfield viscometer. The formulated medium presented the increase in gum production (30%), broth (136%) and 1% gum solution viscosity (60%) compared to YM, besides the inferior cost. The results showed the importance of the quality of the inoculum from the first stage of the culture which influenced on the gum viscosity in the second stage.  相似文献   

16.
R B More  G B Thurston 《Biorheology》1987,24(3):297-309
The intrinsic viscoelasticity of erythrocyte suspensions holds great potential for specifying the deformability of the individual, noninteracting cells in an oscillatory shear flow field. In order to extrapolate to zero cell concentration, the complex viscoelastic modulus was measured as a function of hematocrit using 2 Hertz oscillatory flow and a shear rate of 10/sec. This was done for both normal cells and cells with severely reduced deformability when hardened with glutaraldehyde. Suspension media were blood plasma, isotonic saline, and Dextran solutions. The real parts of the complex intrinsic visco-elasticities were obtained by an extrapolation using a regression fit to Huggins' equation. For normal cells in native plasma the values ranged from 1.7 to 2, increasing to the range 2.4 to 3.1 when the plasma was diluted with isotonic saline solution. For hardened cells the value obtained was near 3.5. These results are compared with theories for suspensions of both rigid and deformable particles. Several theories for deformable particles predict an increase in intrinsic viscoelasticity with increases in the ratio of the viscosity of the interior of the particle to that of the suspending medium. This ratio controls the balance between rotational and deformational response of the cell in the flow field. The trends of these theories were observed in the measurements.  相似文献   

17.
Concentration profiles of 2.5 microns latex beads were measured to demonstrate lateral transport of platelet-sized objects in flows of blood suspensions; the flows had equivalent Poiseuille wall shear rates (WSRs) from 250 to 1220 s-1. Each experimental trial began with a steady flow of suspension without beads in a thin-walled capillary tube (219 microns ID; 10.2 microns SD). The tube entrance was then switched to a reservoir containing suspension of equal hematocrit, but with beads, for a short interval of flow at the same WSR. This process established a paraboloidal tongue of labeled suspension with a transient concentration gradient at its surface. The tube and contents were rapidly frozen to fix the suspended particles in flow-determined locations. Segments of frozen tube were collected at distances from the entrance corresponding to 13%, 39%, and 65% of the axial extent of the ideal paraboloidal tongue. Concentration profiles were estimated from distances measured on fluorescence microscope images of cross-cut tube segments. Experiments used tubes either 40 or 50 cm long, suspension hematocrits of 0, 15, or 40%, and bead concentrations in the range of 1.5-2.2 x 10(5)/mm3. Profiles for 0% hematocrit suspension, a dilute, single-component suspension, had features expected in normal diffusive mixing in a flow. Distinctly different profiles and more lateral transport occurred when the suspensions contained red cells; then, all profiles for 13% extent had regions of excess bead concentration near the wall. Suspension flows with 40% hematocrit exhibited the largest amount of lateral transport. A case is made that, to a first approximation, the rate of lateral transport grew linearly with WSR; however, statistical analysis showed that for 40% hematocrit, less lateral transport occurred when the WSR was 250 s-1 or 1220 s-1 than 560 s-1, thus indicating that the rate behavior is more complex.  相似文献   

18.
In three model systems, particles the size of cells or smaller have been surface labeled with ferritin to make them slightly paramagnetic, by virtue of the iron in the ferritin. In each case it was possible to show that labeled particles could be magnetically removed from a flowing suspension by the high-gradient magnetic separation (HGMS) technique. The first system of particles consisted of small (1 micron) carboxylate-modified latex spheres to which ferritin was covalently bound to create stable paramagnetic particles analogous to a ferritin-labeled subcellular membrane preparation. In the second system polyacrylamide beads that more closely approximated whole cells in size (5-50 microns) were labeled with immunoferritin. The third system was a biomembrane preparation: erythrocyte ghosts labeled with a ferritin-lectin conjugate. A field of 7 T (tesla) (70 kG) was used in each case, along with buffer flow rates through the HGMS column in the range 0.1-1.0 ml/min.  相似文献   

19.
A human colon adenocarcinoma cell line, WiDr, has been grown in monolayer, as multicellular spheroids, and as xenografted tumors in immune-deprived mice. The growth and radiation responses of the cells under these different growth conditions were compared. The mean doubling time of monolayer cultures was 0.8 day and the initial volume doubling times of spheroids and xenografts averaged 1.2 and 6 days, respectively. The mean total viable cell plating efficiencies were 82, 63, and 7% for cells from monolayers, spheroids, and xenografted tumors, respectively. The radiation responses of single cell suspensions prepared from WiDr tumors (8-10 mm in diameter), exponentially growing monolayer cultures (5 days growth), and spheroids (1200 microns in diameter) irradiated in air at 4 degrees C were similar. Values for D0 were 1.5 Gy and for n between 3 and 5. Nitrogen curves were characterized by a D0 of 5 Gy and n between 3 and 6. Oxygen enhancement ratios were approximately 3.3. Both spheroids and tumors had radioresistant components to the 37 degrees C/air-breathing survival curves with estimated hypoxic fractions of 8 and 12%, respectively. The final portion of the survival curves for irradiations in nitrogen and under normal growth conditions were parallel for both tumors and spheroids. Thus WiDr spheroids appear to model accurately the radiation sensitivity of WiDr tumors.  相似文献   

20.
During the growth of EMT6/Ro mammary tumor multicell spheroids, a large number of cells are shed into the suspension medium. The rate of cell shedding was 218 cells per square millimeter of spheroid surface per hour, or up to 1.5% of the total spheroid cell content per hour. Shed cells had a clonogenic capacity equal to that of exonential monolayer cultures and were further characterized by volume distribution, mitotic index, flow cytoflurometry, and autoradiography. The results indicated that cells are released from the spheroid surface at mitosis, presumably due to a loosening of the cell-to-cell attachment during this cycle phase. These mitotic cells, when placed in monolayer culture, attached and grew synchronously with a cell cycle time of about 13 hours. Shed cells kept in suspension culture had a similar cell cycle time, but these cells reaggregated immediately after mitosis. The results indicated that cell shedding and reaggregation both occur near the time of mitosis and are intrinsic factors regulating the initiation and subsequent growth of multicell spheroids. Although these studies were done with spheroids cultured in vitro, shedding of mitotic cells may play an important role in the in vivo process of metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号