首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The basic kinetic properties of the solubilized and purified Ca2+-translocating ATPase from human erythrocyte membranes were studied. A complex interaction between the major ligands (i.e., Ca2+, Mg2+, H+, calmodulin and ATP) and the enzyme was found. The apparent affinity of the enzyme for Ca2+ was inversely proportional to the concentration of free Mg2+ and H+, both in the presence or absence of calmodulin. In addition, the apparent affinity of the enzyme for Ca2+ was significantly increased by the presence of calmodulin at high concentrations of MgCl2 (5 mM), while it was hardly affected at low concentrations of MgCl2 (2 mM or less). In addition, the ATPase activity was inhibited by free Mg2+ in the millimolar concentration range. Evidence for a high degree of positive cooperativity for Ca2+ activation of the enzyme (Hill coefficient near to 4) was found in the presence of calmodulin in the slightly alkaline pH range. The degree of cooperativity induced by Ca2+ in the presence of calmodulin was decreased strongly as the pH decreased to acid values (Hill coefficient below 2). In the absence of calmodulin, the Hill coefficient was 2 or slightly below over the whole pH range tested. Two binding affinities of the enzyme for ATP were found. The apparent affinity of the enzyme for calmodulin was around 6 nM and independent of the Mg2+ concentration. The degree of stimulation of the ATPase activity by calmodulin was dependent on the concentrations of both Ca2+ and Mg2+ in the assay system.  相似文献   

2.
Effect of Magnesium on Replication of Rhinovirus HGP   总被引:2,自引:0,他引:2       下载免费PDF全文
It is known that plaque formation by some rhinoviruses is greatly enhanced by increasing the concentration of MgCl(2). The mechanism of this action was studied by investigating the effects of MgCl(2) on rhinovirus HGP adsorption, growth, clumping, thermal stability, and cell susceptibility to viral cytopathic effect. The latent period was at most 7 hr, whether virus was propagated in cells maintained in 0.8 or 30 mm MgCl(2), but virus release was 8- to 310-fold greater in the presence of 30mm MgCl(2), depending on initial multiplicity. Intracellular virus content appeared unaffected by Mg(++) and reached maximal yield (plateau phase) at about 10 hr. Viral adsorption was increased when cells were maintained in 30mm Mg(++). It is likely that the two effects of magnesium, enhanced adsorption and increased virus release, both contribute to enhancement of plaque formation.  相似文献   

3.
We have used alkyl ether analogs of ethanolamine and choline phospholipids as ligands to purify phospholipase A2 (EC 3.1.1.4) from Crotalus adamanteus venom by affinity chromatography. One of the affinity columns was prepared with rac-1-(9-carboxy)nonyl-2-hexadecylglycero-3-phosphocholine linked to AH-Sepharose 4B via the carboxyl group. Specific adsorption of phospholipase A2 to this column was achieved in buffer containing Ca2+, and the enzyme was eluted in buffer containing EDTA. The two enzymes from this venom were prepared in good yield (greater than 90%), and were homogeneous as judged by polyacrylamide gel electrophoresis. Retention of phospholipase A2 did not occur when the initial irrigant was devoid of Ca2+. These results support the compulsory ordered mechanism for this enzyme proposed by Wells ((1972), Biochemistry 11, 1030-1041) on the basis of kinetic considerations. The second affinity support was prepared with 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine attached through the amine moiety to CH-Sepharose 4B. Specific adsorption of phospholipase A2 to this column did not occur. These data indicate that the phospholipid base group must be accessible to the enzyme for optimal binding, and that modifications in the alkyl side chains are more desirable when designing affinity matrices for purification of enzymes involved in phospholipid metabolism.  相似文献   

4.
A procedure was developed to purify the Streptococcus faecium ATCC 12755 L-alpha-glycerophosphate oxidase. The molecular weight of the purified enzyme was 131,000 and the subunit molecular weight was 72,000. Two moles of FAD were bound/mol of enzyme. Apo-L-alpha-glycerophosphate oxidase displayed physical properties similar to the holoenzyme as judged by electrophoresis in 10% buffer gels at pH 8.5 and by centrifugation in a 5 to 20% linear sucrose gradient. The apoenzyme was completely reactivated by incubation with FAD. L-alpha-Glycerophosphate oxidase was specific for L-alpha-glycerophosphate when compared with several other pohsphorylated glycerol and sugar derivatives. Oxygen was the preferred electron acceptor. At 10 mM DL-alpha-glycerophosphate (below the Km of 26 mM for L-alpha-glycerophosphate), activity was increased from 2.6- to 10-fold by increasing the buffer concentration from 0.01 to 0.1 m. This buffer effect was observed with potassium phosphate and other anionic buffers. In 0.001 m potassium phosphate buffer, pH 7.0, activity was increased by several divalent metal ions, including 10 mM CaCl2 (7.7-fold activation) and 10 mM MgCl, (6.8-fold activation). Fructose 6-phosphate and fructose1-phosphate were inhibitors of the L-alpha-glycerophosphate oxidase.  相似文献   

5.
A method of affinity chromatography was developed for purification of phospholipase A2(PL-A2) from the Central Asian cobra venon. The enzyme was covalently coupled to a polyamide sorbent with phosphatidilethanolamine (PEA) and cytotoxin (CT). The effect of CA2+ concentration and the ion strength of the solution on the enzyme adsorption was studied. The most efficient coupling of the enzyme to the sorbent was observed at pH 8--9 in case of the Ca2+ absence and a low ion strength of the solution. For desorption of the enzyme Triton X-100 at a concentration of 0.5% should be introduced in the eluting solution. The affinity adsorption chromatography enabled the isolation of two forms of phospholipase A2 with different affinity for PEA and CT. The total yield of the enzyme was 91% at a purification degree of 5.5 and 3.5, respectively. The introduction of the second ligand (CT) in the composition of the sorbent with the phospholipid ligand allowed the authors to increase its capacity and affinity for the phospholipase A2 from the snake venom.  相似文献   

6.
Using the poly-His-tagged-beta-galactosidase from Thermus sp. strain T2 overexpressed in Escherichia coli (MC1116) as a model enzyme, we have developed a strategy to purify and immobilize proteins in a single step, combining the excellent properties of epoxy groups for enzyme immobilization with the good performance of immobilized metal-chelate affinity chromatography for protein purification. The aforementioned enzyme could not be immobilized onto standard epoxy supports with good yields, and after purification and storage, it exhibited a strong trend to yield very large aggregates as shown by ultracentrifugation experiments. That preparation could not be immobilized in any support, very likely because the pores of the solid became clogged by the large aggregates. These novel epoxy-metal chelate heterofunctional supports contain a low concentration of Co(2+) chelated in IDA groups and a high density of epoxy groups. This enabled the selective adsorption of poly-His-tagged enzymes, and as this adsorption step is necessary for the covalent immobilization procedure, the selective covalent immobilization of the target enzyme could take place. This strategy allowed similar maximum loadings of the target enzyme using either pure or crude preparations of the enzyme. The enzyme derivative presented a very high activity at 70 degrees C (over 1000 IU in the hydrolysis of lactose) and very high stability and stabilization when compared to its soluble counterpart (activity remained unaltered after several days of incubation at 50 degrees C). In fact, this preparation was much more stable than when the same enzyme was immobilized onto standard epoxy Sepabeads.  相似文献   

7.
An assessment was made of some of the basic parameters responsible for the modulation of adenylate cyclase activity in a bovine adrenocortical plasma-membrane preparation. When determined at 0.1 mM-ATP, basal adenylate cyclase activity increased with increasing MgCl2 concentrations, whereas in the presence of corticotropin activity was essentially maximal at 10mM-MgCl2; high concentrations (25mM) of MgCl2 inhibited adenylate cyclase activity determined in the presence of both corticotropin and GTP. At all MgCl2 concentrations, corticotropin and GTP activated the enzyme in a synergistic fashion. The magnitude of the stimulation of basal activity produced by corticotropin was a function of Mg2+ concentration, whereas that produced by GTP appeared largely independent of Mg2+ concentration. Adenylate cyclase activity in the bovine adrenal membrane was half-maximally stimulated by corticotropin concentrations in the range 0.3--1.0 nM. The concentration of corticotropin evoking half-maximum response was not significantly affected by raising the free Mg2+ concentration from 0.4 to 4.9 mM, nor by the presence of GTP. In the presence of GTP, high concentrations (over 1 micrometer) of corticotropin inhibited adenylate cyclase activity, although no inhibition was apparent in the absence of guanine nucleotide.  相似文献   

8.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

9.
The DNA-dependent RNA polymerase was purified from Rickettsia prowazekii, an obligate intracellular bacterial parasite. Because of limitation of available rickettsiae, the classical methods for isolation of the enzyme from other procaryotes were modified to purify RNA polymerase from small quantities of cells (25 mg of protein). The subunit composition of the rickettsial RNA polymerase was typical of a eubacterial RNA polymerase. R. prowazekii had beta' (148,000 daltons), beta (142,000 daltons), sigma (85,000 daltons), and alpha (34,500 daltons) subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The appropriate subunits of the rickettsial RNA polymerase bound to polyclonal antisera against Escherichia coli core polymerase and E. coli sigma 70 subunit in Western blots (immunoblots). The enzyme activity was dependent on all four ribonucleoside triphosphates, Mg2+, and a DNA template. Optimal activity occurred in the presence of 10 mM MgCl2 and 50 mM NaCl. Interestingly, in striking contrast to E. coli, approximately 74% of the rickettsial RNA polymerase activity was associated with the rickettsial cell membrane at a low salt concentration (50 mM NaCl) and dissociated from the membrane at a high salt concentration (600 mM NaCl).  相似文献   

10.
Adsorption of DNA to sand and variable degradation rates of adsorbed DNA   总被引:11,自引:0,他引:11  
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

11.
The binding processes of GroEL with apo cytochrome c (apo-cyt c) and disulfide-reduced apo alpha-lactalbumin (rLA) in homogeneous solution at low concentration were analyzed by fluorescence correlation spectroscopy (FCS) with extremely high sensitivity. Although apo-cyt c, a positively charged substrate, was tightly bound to GroEL in both the absence and the presence of 200 mM KCl, the strength of the binding was changed with varying salt concentration. Results from experiments when two different salts (KCl or MgCl(2)) were titrated into a sample solution containing GroEL and apo-cyt c clearly showed that the binding strength decreased with increasing salt concentration. On the other hand, the binding affinity of GroEL for rLA, a negatively charged substrate, increased by adding of 200 mM KCl. These results indicate that electrostatic interactions substantially contribute to the binding interactions by manipulating the binding affinity of charged substrates.  相似文献   

12.
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

13.
S Wakabayashi  M Shigekawa 《Biochemistry》1990,29(31):7309-7318
The mechanism for activation of sarcoplasmic reticulum ATPase by Ca2+ was investigated in 2 mM MgCl2 and 0.1 M KCl at pH 6.5 and 11 degrees C by using enzyme preparations in which a specific amino acid residue (Cys-344) was labeled with 4-nitrobenzo-2-oxa-1,3-diazole (NBD) [Wakabayashi, S., Imagawa, T., & Shigekawa, M. (1990) J. Biochem. (Tokyo) 107, 563-571]. We compared the kinetics of binding and dissociation of Ca2+ from the enzyme with those of the accompanying NBD fluorescence changes. The fluorescence rise following addition of Ca2+ proceeded monoexponentially. At 2-100 microM Ca2+ and in the absence of nucleotides, the Ca2(+)-induced fluorescence rise and Ca2+ binding to the enzyme proceeded at similar rates, which were almost independent of the Ca2+ concentration. In contrast, the fluorescence decrease induced by Ca2+ removal was slower than the Ca2+ dissociation, and both of these processes were inhibited markedly by increasing medium Ca2+. ATP by binding at 1 mol/mol of the phosphorylation site markedly accelerated both the Ca2(+)-induced fluorescence rise and Ca2+ binding, ADP and AMPPNP but not GTP also being effective. In contrast, ADP minimally affected the NBD fluorescence decrease and the Ca2+ dissociation. These data are consistent with a reaction model in which binding of Ca2+ occurs after the conformational transition of the free enzyme from a state (E2) having low affinity for Ca2+ to one (E1) having high affinity for Ca2+ and in which ATP bound at the catalytic site of E2, whose affinity for ATP is about 30-fold less than that of E1, accelerates this conformational transition.  相似文献   

14.
Kinetic and binding studies have shown that Lys39 of Escherichia coli ADPglucose synthetase is involved in binding of the allosteric activator. In order to study structure-function relationships at the activator binding site, this lysine residue was substituted by glutamic acid (Lys39----Glu) by site-directed mutagenesis. The resultant mutant enzyme (E-39) showed activation kinetics different from those of the wild-type enzyme. The level of activation of the E-39 enzyme by the major activators of E. coli ADPglucose synthetase, 2-phosphoglycerate, pyridoxal phosphate, and fructose-1,6-phosphatase was only approximately 2-fold compared to activation of 15- to 28-fold respectively, for the wild-type enzyme. NADPH, an activator of the wild-type enzyme, was unable to activate the mutant enzyme. In addition, the concentrations of the above activators necessary to obtain 50% of the maximal stimulation of enzyme activity (A0.5) were 5-, 9-, and 23-fold higher, respectively, than those for the wild-type enzyme. The E-39 enzyme also had a lower apparent affinity (S0.5) for the substrates ATP and MgCl2 than the wild-type enzyme and the values obtained in the presence or absence of activator were similar. The concentration of inhibitor giving 50% of enzyme activity (I0.5) was also similar for the E-39 enzyme in the presence or absence of activator. These results indicate that the E-39 mutant enzyme is not effectively activated by the major activators of the E. coli ADPglucose synthetase wild-type enzyme, and that this amino acid substitution also prevents the allosteric effect that the activator has on the wild-type enzyme kinetics, either increasing its apparent affinity for the substrates or modulating the enzyme's sensitivity to inhibition.  相似文献   

15.
Cibacron blue T_3GA与溴化氰活化的Sepharose 4B偶联后,产生一种能有效地分离有机磷水解酶的吸附剂。用0.15mol/L MgCl_2溶液从黄杆菌P3—2细胞抽提出的粗酶液通过柱层析分离,即可得到纯化8倍、酶活性回收率为269.4%的纯酶制品。该酶制品用凝胶电泳测是均一的。  相似文献   

16.
An improved method was devised to purify ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with high specific activity (2.1 mumol of CO2 fixed/mg protein/min) from Euglena gracilis Z. The purified enzyme stored at -80 degrees C required treatment with dithiothreitol for full activity. The dithiothreitol-treated RuBisCO was activated by 12 mM NaHCO3 and 20 mM MgCl2, and the activated state was stable at least for 60 min in the presence of 4 mM ethylenediaminetetraacetate. The form of inorganic carbon fixed by the Euglena enzyme was CO2, as for the plant enzymes. The carboxylase reaction proceeded linearly with time for at least 8 min. The optimum pH for this reaction was 7.8 to 8.0. The carboxylase activity increased with increasing temperature up to 50 degrees C. The activation energy for the carboxylation reaction was 10.0 kcal/mol. The Michaelis constants of Euglena RuBisCO were 30.9 microM for CO2, 560 microM for O2, and 10.5 microM for ribulose 1,5-bisphosphate. Mathematical comparison between the photosynthesis rate predicted from these enzymatic properties and the observed rate suggested that there is no CO2-concentrating mechanism in E. gracilis.  相似文献   

17.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+- dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187--3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabain-inhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V] -vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution. These findings are considered in terms of Mn2+ at the divalent cation site being a better selector than Mg2+ of the E2 conformational states of the enzyme, states also selected by K+ and by dimethylsulfoxide and reactive with ouabain and vanadate; the E1 conformational states, by contrast, are those selected by Na+ and ATP, and also by Triton X-100.  相似文献   

18.
Multiple equilibrium equations were solved to separate the individual effects of ionic divalent metals, free nucleotides and their chelated species on insulin receptor tyrosine kinase (IRTK). Basal IRTK is activated by divalent metal cations when present in excess of that required for substrate formation, indicating the presence of a divalent cation-dependent regulatory site on the kinase. The activatory order for basal activity was Mn2+ greater than Co2+ greater than Mg2+ and Ca2+ = 0. The insulin-dependent activation of IRTK was minimal in the absence of excess free divalent metal, even when the concentration of MnATP or MgATP substrate present exceeded the apparent Km of the kinase. The activatory order for insulin-dependent activation of IRTK changed to Mg2+ greater than Mn2+ and Co2+ = 0. The titration of the MnCl2 saturation response at several concentrations of MgCl2 revealed that the insulin-dependent response of IRTK increases as a function of increasing MgCl2, while basal activity was unaffected. This enhancement of the responsiveness to insulin in the presence of both cations was not due to differing affinities of the kinase for substrate, as evidenced by nearly identical apparent Km values for MnATP and MgATP. The Mg2+-dependent increase in the response of the kinase to insulin may be due to Mg2+ inducing a stronger coupling between receptor and kinase than that observed with Mn2+ alone. The plotting of the effect of several concentrations of free divalent metals on substrate saturation curves revealed that an increase in either of the reactants increased the affinity of the insulin-activated kinase for the other respective reactant. Accordingly, free divalent metal and metal-ATP substrate interact with IRTK in a mutually inclusive manner. CaCl2 saturation curves in the presence of constant MnCl2 and increasing MgCl2 showed that the affinity of IRTK for Ca2+ decreases and the affinity for CaATP increased with increasing Mg2+. Our data suggests that IRTK contains three sites for interaction with divalent metal cations: a MeATP (active) site, a regulatory site, and a metal-dependent site acting to couple the receptor with the kinase.  相似文献   

19.
Study on the mechanism of hexokinase isozyme II adsorption on mitochondrial membranes in the presence of 10 mM MgCl2 demonstrated that 0.16% of the total proteins of the soluble fraction and the total hexokinase pool are capable of reversible binding to the membrane. The plot for the dependence of the degree of enzyme adsorption on Mg2+ concentration is hyperbolic. Under these conditions, hexokinase competes favourably for the binding sites with lactate dehydrogenase and creatine kinase. Analysis of the adsorption capacity of natural and artificial phospholipid membranes showed that hexokinase isozyme II is adsorbed in much the same way on inner and outer mitochondrial membranes as well as on a mixture of membranes obtained from various sources and on lecithin liposomes. The adsorption properties of hexokinase isozyme II and of its functional analog--isozyme I--point to marked differences in the mechanism of their interaction with the membrane. In contrast with isozyme I, isozyme II of hexokinase undergoes kinetic alterations. Besides, it was found that mild autolysis of isozyme II is accompanied by a loss of the enzyme ability to bind to mitochondrial membranes. The data obtained suggest that the specificity of hexokinase isozyme II adsorption depends on the structural peculiarities of the protein but not on those of the mitochondrial membrane.  相似文献   

20.
Four enteric viruses, poliovirus type 1, echovirus type 1, reovirus type 3, and simian adenovirus SV-11, were concentrated from seeded 1.3-liter volumes of raw, finished, and granular activated carbon-treated waters by adsorption to 47-mm-diameter (17 cm2), electropositive ( Virosorb 1MDS ) filters at pH 7.5 or electronegative ( Filterite ) filters at pH 3.5 with and without 5 mM added MgCl2, followed by elution with 0.3% beef extract in 50 mM glycine at pH 9.5. Removal of particulates from raw and finished waters by 0.2-micron prefiltration before virus addition and pH adjustment had little effect on virus concentration efficiencies. Soluble organic compounds reduced virus adsorption efficiencies from both raw and finished waters compared with granular activated carbon-treated water, but the extent of interference varied with virus type and adsorption conditions. For electropositive 1MDS filters, organic interference was similar with all virus types. For Filterite filters, organic interference was evident with poliovirus and echovirus, but could be overcome by adding MgCl2. Reovirus and SV-11 were not adversely affected by organics during adsorption to Filterite filters. Elution of reovirus and adenovirus was inefficient compared with that of poliovirus and echovirus. None of the three adsorption schemes ( 1MDS at pH 7.5 and Filterite with and without 5 mM MgCl2 at pH 3.5) could be judged superior for all viruses and water types tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号