首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
BACKGROUND: Cyclin E, in conjunction with its catalytic partner cdk2, is rate limiting for entry into the S phase of the cell cycle. Cancer cells frequently contain mutations within the cyclin D-Retinoblastoma protein pathway that lead to inappropriate cyclin E-cdk2 activation. Although deregulated cyclin E-cdk2 activity is believed to directly contribute to the neoplastic progression of these cancers, the mechanism of cyclin E-induced neoplasia is unknown. RESULTS: We studied the consequences of deregulated cyclin E expression in primary cells and found that cyclin E initiated a p53-dependent response that prevented excess cdk2 activity by inducing expression of the p21Cip1 cdk inhibitor. The increased p53 activity was not associated with increased expression of the p14ARF tumor suppressor. Instead, cyclin E led to increased p53 serine15 phosphorylation that was sensitive to inhibitors of the ATM/ATR family. When either p53 or p21cip1 was rendered nonfunctional, then the excess cyclin E became catalytically active and caused defects in S phase progression, increased ploidy, and genetic instability. CONCLUSIONS: We conclude that p53 and p21 form an inducible barrier that protects cells against the deleterious consequences of cyclin E-cdk2 deregulation. A response that restrains cyclin E deregulation is likely to be a general protective mechanism against neoplastic transformation. Loss of this response may thus be required before deregulated cyclin E can become fully oncogenic in cancer cells. Furthermore, the combination of excess cyclin E and p53 loss may be particularly genotoxic, because cells cannot appropriately respond to the cell cycle anomalies caused by excess cyclin E-cdk2 activity.  相似文献   

2.
The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity.  相似文献   

3.
4.
We previously reported that the abnormal BTG2 expression was related to genesis/development of hepatocellular carcinoma (HCC). The aim of this study was to evaluate the BTG2 expression in HCC compared with p53, cyclin D1, and cyclin E. For this purpose, modified diethylnitrosamine (DEN)-induced primary HCC rat model was established. Target proteins and mRNAs were measured by western blot and RT-PCR/northern blot, respectively. In rat liver, expression of BTG2 and other proteins was determined by western blot, and BTG2 mRNA in HCC/normal tissues was detected by high-flux tissue microarray (TMA) and in situ hybridization (ISH). BTG2 mRNA/protein expression was increased in fetal liver, 7701, and LO2 cell lines but decreased in HepG2 cells. BTG2/p53 were expressed early after DEN treatment, peaked at 5?weeks and decreased gradually thereafter. Cyclin-D1/Cyclin-E expression increased significantly with the tumor progression. BTG2 mRNA was expressed in 71.19% HCC by ISH and correlated with differentiation. Expression of p53/cyclin D1/cyclin E was positive in 82.35/94.12/76.47% BTG2 mRNA-negative tissues, respectively. BTG2 protein expression was lost in 32.2% (19/59) HCC tissues, and the mRNA/protein expression correlated significantly with the increasing tumor grade (P?相似文献   

5.
v-Jun accelerates G(1) progression and shares the capacity of the Myc, E2F, and E1A oncoproteins to sustain S-phase entry in the absence of mitogens; however, how it does so is unknown. To gain insight into the mechanism, we investigated how v-Jun affects mitogen-dependent processes which control the G(1)/S transition. We show that v-Jun enables cells to express cyclin A and cyclin A-cdk2 kinase activity in the absence of growth factors and that deregulation of cdk2 is required for S-phase entry. Cyclin A expression is repressed in quiescent cells by E2F acting in conjunction with its pocket protein partners Rb, p107, and p130; however, v-Jun overrides this control, causing phosphorylated Rb and proliferation-specific E2F-p107 complexes to persist after mitogen withdrawal. Dephosphorylation of Rb and destruction of cyclin A nevertheless occur normally at mitosis, indicating that v-Jun enables cells to rephosphorylate Rb and reaccumulate cyclin A without exogenous mitogenic stimulation each time the mitotic "clock" is reset. D-cyclin-cdk activity is required for Rb phosphorylation in v-Jun-transformed cells, since ectopic expression of the cdk4- and cdk6-specific inhibitor p16(INK4A) inhibits both DNA synthesis and cell proliferation. Despite this, v-Jun does not stimulate D-cyclin-cdk activity but does induce a marked deregulation of cyclin E-cdk2. In particular, hormonal activation of a conditional v-Jun-estrogen receptor fusion protein in quiescent, growth factor-deprived cells stimulates cyclin E-cdk2 activity and triggers Rb phosphorylation and DNA synthesis. Thus, v-Jun overrides the mitogen dependence of S-phase entry by deregulating Rb phosphorylation, E2F-pocket protein interactions, and ultimately cyclin A-cdk2 activity. This is the first report, however, that cyclin E-cdk2, rather than D-cyclin-cdk, is likely to be the critical Rb kinase target of v-Jun.  相似文献   

6.
Cell cycle progression is regulated through changes in the activity of cyclin-dependent kinases that are, in turn, regulated by the expression of their respective cyclin partners. In primary cells, cyclin E expression increases through the G1 phase of the cell cycle and peaks near the G1/S boundary. The unscheduled expression of cyclin E in primary human fibroblasts leads to chromosomal instability that is greatly increased by loss of the p53 tumour suppressor. Intriguingly, ultraviolet light (UV), the most prevalent environmental carcinogen, is similarly known to induce chromosomal instability more dramatically in the absence of p53. Here we report that UV light transiently increased the expression of cyclin E in normal human fibroblasts. Strikingly, cyclin E levels remained elevated for an extended period of time in the absence of functional p53. UV-induced cyclin E expression was not restricted to the G1/S boundary but remained elevated throughout S phase and this correlated with a massive accumulation of p53-deficient fibroblasts in this phase of the cell cycle. Forced expression of cyclin E alone was insufficient to cause a similar S phase arrest but forced expression of cyclin E led to an increase in the proportion of UV-irradiated cells in S phase. The present work suggests that p53 affects S phase progression following UV exposure by preventing the sustained unscheduled expression of cyclin E and that this may limit the clastogenic and carcinogenic effects of UV light.  相似文献   

7.
Cyclin E, a positive regulator of the cell cycle, controls the transition of cells from G(1) to S phase. Deregulation of the G(1)-S checkpoint contributes to uncontrolled cell division, a hallmark of cancer. We have reported previously that cyclin E is overexpressed in breast cancer and such overexpression is usually accompanied by the appearance of low molecular weight isoforms of cyclin E protein, which are not present in normal cells. Furthermore, we have shown that the expression of cyclin E low molecular weight isoforms can be used as a reliable prognostic marker for breast cancer to predict patient outcome. In this study we examined the role of cyclin E in directly activating cyclin-dependent kinase (CDK) 2. For this purpose, a series of N-terminal deleted forms of cyclin E corresponding to the low molecular weight forms detected only in cancer cells were translated in vitro and mixed with cell extracts. These tumor-specific N-terminal deleted forms of cyclin E are able to activate CDK2. Addition of cyclin E into both normal and tumor cell extracts was shown to increase the levels of CDK2 activity, along with an increase in the amount of phosphorylated CDK2. The increase in CDK2 activity was because of cyclin E binding to endogenous CDK2 in complex with endogenous cyclin E, cyclin A, or unbound CDK2. The increase in CDK2 phosphorylation was through a pathway involving cyclin-activating kinase, but addition of cyclin E to an extract containing unphosphorylated CDK2 can still lead to increase in CDK2 activity. Our data suggest that the ability of high levels of full-length and low molecular weight forms of cyclin E to activate CDK2 may be one mechanism that leads to the constitutive activation of cyclin E.CDK2 complexes leading to G(1)/S deregulation and tumor progression.  相似文献   

8.
Negative regulation of E2F-1 DNA binding function by cyclin A kinase represents part of an S-phase checkpoint control system that, when activated, leads to apoptosis. In this study, we examined the cellular sensitivity and resistance of isogenic mouse fibrosarcoma cell lines, differing primarily in their p53 status, to ectopic expression of wild-type (wt) E2F-1 and cyclin A kinase binding-defective mutants of it. We found that E2F-1 (wt) potently affected the survival of p53+/+ tumor cells but not that of p53-/- cells. In contrast, expression of cyclin A kinase binding-defective E2F-1 species interfered with cell survival of fibrosarcoma cells irrespective of their p53 status. Finally, expression of E2F-1 (wt) in p53-/- fibrosarcoma cells enhanced the cytotoxic effect of ionizing radiation in vitro and in vivo in a mouse tumor model. These results suggest that E2F-1-dependent activation of an S-phase checkpoint is p53 independent and that E2F-1 possesses radiosensitizing properties in the absence of p53.  相似文献   

9.
10.
Abnormal cell cycle regulation in primary human uveal melanoma cultures   总被引:2,自引:0,他引:2  
Uveal malignant melanoma is the most frequent primary intraocular tumor in adult humans. The cellular events leading to neoplasic transformation of normal uveal melanocytes are not well known when compared to other cancers. In this study, we investigated the role of G1 and G1/S regulatory proteins of the cell cycle in human uveal melanoma (UM) primary cell cultures, since these proteins are common targets in tumor development. Further, freshly established and characterized tumor cells are a better model for in vitro studies when compared to cell lines established long ago. Human primary cell cultures from eight different UM were established, as well as one primary culture from rhesus uveal normal melanocytes (UNM). Primary human UM cultures were characterized by a low establishment and growing rate. From four successful cultures, three showed a high expression of cyclin D1, cyclin E, p16NK4A, and p27KIP1 with no variations in cyclin A, cyclin-dependent kinase 2 (CDK2), and CDK4. Interestingly, in one of the cultured tumors, tumor suppressor protein retinoblastoma (Rb) did not bind E2F despite the fact that Rb was found in its hypophosphorylated form. No mutations in either RB1 or the Rb-binding pocket of E2F-1 were detected. Furthermore, we identified seven proteins co-immunoprecipitating with Rb in this tumor, including Lamin A/C and six proteins not previously reported to bind Rb: Hsc70, high mobility group protein 1 (HMG-1), hnRPN, glyceraldehyde 3 phosphate dehydrogenase (G3PDH), EF-1, and EF-2. Our results indicate that the overexpression of cyclins D1/E and CDKIs p16 and p27, together with a deregulation of the Rb/E2F pathway, may be implicated in the development of human UM.  相似文献   

11.
The retinoblastoma protein (RB) plays an important role in growth suppression through the formation of multiple protein complexes with its target proteins using A/B and C pockets. Even though the A/B and C pockets co-operate for growth suppression, the function of RB in growth arrest is inhibited by the coexpression of RB C fragments with full length RB in the absence of p53, which implies that C pocket fragments are likely to act as a dominant-negative inhibitor of RB function. In contrast, the loss of the RB functions in the presence of p53 triggers a cell cycle arrest or apoptosis by p53-dependent pathways. Thus, it still remains to be elucidated whether the expression of RB C pocket fragments in the presence of p53 induces delayed cell cycle progression and sensitizes cells to apoptosis through p53-dependent pathways. Our results show that the expression of RB C pocket fragments not only induces delayed cell cycle progression, which is mediated by the down-regulation of cyclin A, cyclin E, and E2F-1, but also sensitizes cells to apoptosis through p53-dependent pathways.  相似文献   

12.
13.
Cyclins E1 drives the initiation of DNA replication, and deregulation of its periodic expression leads to mitotic delay associated with genomic instability. Since it is not known whether the closely related protein cyclin E2 shares these properties, we overexpressed cyclin E2 in breast cancer cells. This did not affect the duration of mitosis, nor did it cause an increase in p107 association with CDK2. In contrast, cyclin E1 overexpression led to inhibition of the APC complex, prolonged metaphase and increased p107 association with CDK2. Despite these different effects on the cell cycle, elevated levels of either cyclin E1 or E2 led to hallmarks of genomic instability, i.e., an increased proportion of abnormal mitoses, micronuclei and chromosomal aberrations. Cyclin E2 induction of genomic instability by a mechanism distinct from cyclin E1 indicates that these two proteins have unique functions in a cancer setting.  相似文献   

14.
Curcumin (diferuloylmethane) is known to induce apoptosis in tumor cells. In asynchronous cultures, with time-lapse video-micrography in combination with quantitative fluorescence microscopy, we have demonstrated that curcumin induces apoptosis at G(2) phase of cell cycle in deregulated cyclin D1-expressed mammary epithelial carcinoma cells, leaving its normal counterpart unaffected. In our search toward delineating the molecular mechanisms behind such differential activities of curcumin, we found that it selectively increases p53 expression at G(2) phase of carcinoma cells and releases cytochrome c from mitochondria, which is an essential requirement for apoptosis. Further experiments using p53-null as well as dominant-negative and wild-type p53-transfected cells have established that curcumin induces apoptosis in carcinoma cells via a p53-dependent pathway. On the other hand, curcumin reversibly inhibits normal mammary epithelial cell cycle progression by down-regulating cyclin D1 expression and blocking its association with Cdk4/Cdk6 as well as by inhibiting phosphorylation and inactivation of retinoblastoma protein. In addition, curcumin significantly up-regulates cell cycle inhibitory protein (p21Waf-1) in normal cells and arrests them in G(0) phase of cell cycle. Therefore, these cells escape from curcumin-induced apoptosis at G(2) phase. Interestingly, these processes remain unaffected by curcumin in carcinoma cells where cyclin D1 expression is high. Similarly, in ectopically overexpressed system, curcumin cannot down-regulate cyclin D1 and thus block cell cycle progression. Hence, these cells progress into G(2) phase and undergo apoptosis. These observations together suggest that curcumin may have a possible therapeutic potential in breast cancer patients.  相似文献   

15.
Myeloid leukemia factor 1 (MLF1) stabilizes the activity of the tumor suppressor p53 by suppressing its E3 ubiquitin ligase, COP1, through a third component of the COP9 signalosome (CSN3). However, little is known about how MLF1 functions upstream of the CSN3-COP1-p53 pathway and how its deregulation by the formation of the fusion protein nucleophosmin (NPM)-MLF1, generated by t(3;5)(q25.1;q34) chromosomal translocation, leads to leukemogenesis. Here we show that MLF1 is a cytoplasmic-nuclear-shuttling protein and that its nucleolar localization on fusing with NPM prevents the full induction of p53 by both genotoxic and oncogenic cellular stress. The majority of MLF1 was located in the cytoplasm, but the treatment of cells with leptomycin B rapidly induced a nuclear accumulation of MLF1. A mutation of the nuclear export signal (NES) motif identified in the MLF1 sequence enhanced the antiproliferative activity of MLF1. The fusion of MLF1 with NPM translocated MLF1 to the nucleolus and abolished the growth-suppressing activity. The introduction of NPM-MLF1 into early-passage murine embryonic fibroblasts allowed the cells to escape from cellular senescence at a markedly earlier stage and induced neoplastic transformation in collaboration with the oncogenic form of Ras. Interestingly, disruption of the MLF1-derived NES sequence completely abolished the growth-promoting activity of NPM-MLF1 in murine fibroblasts and hematopoietic cells. Thus, our results provide important evidence that the shuttling of MLF1 is critical for the regulation of cell proliferation and a disturbance in the shuttling balance increases the cell's susceptibility to oncogenic transformation.  相似文献   

16.
《Seminars in Virology》1994,5(5):341-348
Adenovirus infection and E1A gene expression stimulates cellular proliferation as a mechanism to facilitate virus replication. Programmed cell death (apoptosis) is the cellular response to this deregulation of growth control by E1A during viral infection and neoplastic transformation. To combat the suicidal elimination of virus infected cells by apoptosis, adenovirus has evolved a mechanism to disengage the apoptotic program of the cell. This anti-apoptotic function is encoded within the adenovirus E1B 19 kDa and 55 kDa gene products. Both viral products encoded by E1B act at independent and overlapping points in the cell death process to ensure that the premature death of the host cell does not take place and that viral infection can progress to completion. The E1B 55K protein functions as an anti-apoptotic gene product by direct physical interference with the p53 tumor suppressor protein, whereas the E1B 19K protein acts to inhibit p53-dependent and probably p53-independent apoptosis by a mechanism that resembles that of the human bcl-2 protooncogene.  相似文献   

17.
Oncogene-induced senescence represents a key tumor suppressive mechanism. Here, we show that Ras oncogene-induced senescence can be mediated by the recently identified haploinsufficient tumor suppressor apoptosis-stimulating protein of p53 (ASPP) 2 through a novel and p53/p19Arf/p21waf1/cip1-independent pathway. ASPP2 suppresses Ras-induced small ubiquitin-like modifier (SUMO)-modified nuclear cyclin D1 and inhibits retinoblastoma protein (Rb) phosphorylation. The lysine residue, K33, of cyclin D1 is a key site for this newly identified regulation. In agreement with the fact that its nuclear localization is required for its oncogenic activity, we show that nuclear cyclin D1 is far more potent than wild-type (WT) cyclin D1 in bypassing Ras-induced senescence. Thus, this study identifies SUMO modification as a positive regulator of nuclear cyclin D1, and reveals a new way by which cell cycle entry and senescence are regulated.  相似文献   

18.
F-box and WD repeat domain-containing 7 (Fbxw7/hAgo/hCdc4/Fbw7) is a p53-dependent tumor suppressor and leads to ubiquitination-mediated suppression of several oncoproteins including c-Myc, cyclin E, Notch, c-Jun and others. Our previous study has indicated that low expression of Fbxw7 was negatively correlated with c-Myc, cyclin E and mutant-p53 in hepatocellular carcinoma (HCC) tissues. But the role and mechanisms of Fbxw7 in HCC are still unknown. Here, we investigated the function of Fbxw7 in HCC cell lines and the anti-tumor activity of recombinant human adenovirus-p53 injection (rAd-p53, Gendicine) administration in vitro and in vivo. Fbxw7-specific siRNA enhanced expression of c-Myc and cyclin E proteins and increased proliferation in cell culture. rAd-p53 inhibited tumor cell growth with Fbxw7 upregulation and c-Myc and cyclin E downregulation in vitro and a murine HCC model. This effect could be partially reverted using Fbxw7-specific siRNA. Here, we suggest that the activation of Fbxw7 by adenoviral delivery of p53 leads to increased proteasomal degradation of c-Myc and cyclin E enabling growth arrest and apoptosis. Addressing this pathway, we identified that rAd-p53 could be a potential therapeutic agent for HCC.  相似文献   

19.
20.
Classical cytotoxic therapy has been minimally useful in the treatment of hepatocellular carcinoma. In an effort to develop a new approach to the treatment of this neoplasm, we have investigated the signal transduction pathways regulating the growth of human hepatoma cells. In the data reported here, cyclic AMP (cAMP), a negative growth regulator for many cells of epithelial origin, induced G1 synchronization and apoptosis in the HepG2 human hepatoma cell line. The effects of cAMP on the components of the G1/S transition were analyzed. There was no detectable effect of two different cAMP analogs, 8-bromo cAMP or dibutyryl cAMP on the level of the D-type cyclins, cyclin E, cyclin-dependent kinase 2, cyclin-dependent kinase 4, p53, or the cyclin-dependent kinase inhibitors p21 or p27. In contrast, the cAMP analogs induced a dramatic downregulation of cyclin A protein, cyclin A messenger RNA, and cyclin A-dependent kinase activity. Cyclin A-dependent kinase has been shown to be required for the G1-S transition. Furthermore, cyclin A deregulation has been implicated in the pathogenesis of hepatocellular carcinoma. The data reported here suggest a novel signal transduction-based approach to hepatoma therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号