首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The relationship between surface electromyography (SEMG) amplitude and the ventilatory threshold has been extensively studied. However, previous studies of muscle fiber conduction velocity (MFCV) are scarce and present insufficient evidence concerning the relationship between MFCV and metabolic responses during cycling. Based on that fact, the purpose of this study is twofold: (1) to investigate the existence of a MFCV threshold (MFCVT) during cycling and (2) to verify if this possible breakpoint is correlated with the ventilatory threshold (VT) and the SEMG threshold (SEMGT). Eight trained male cyclists (age 36.0 ± 9.7 years) performed an incremental cycling test with initial workload of 150 W gradually incremented by 20 W min?1 until the exhaustion. Gas analyses were conducted using a breath-by-breath open-circuit spirometry and SEMG were registered from vastus lateralis in each pedaling cycle with a linear array of electrodes. A bi-segmental linear regression computer algorithm was used to estimate VT, MFCVT and SEMGT respectively in the carbon dioxide production (VCO2), MFCV and electromyography root mean square (EMG RMS) curves. The one way ANOVA for repeated measures did not reveal any significant difference among VT (77.1 ± 7.5% of VO2max), MFCVT (80.3 ± 10.4% of VO2max) and SEMGT (81.9 ± 11.7% of VO2max). The Bland and Altman procedure confirmed a good concordance between SEMGT and VT (Bias = 5.5 of %VO2max) as well as MFCVT and VT (Bias = 5.2 of %VO2max). The present findings suggest that muscle fiber conduction velocity threshold is a valid and reliable non-invasive tool to obtain information about ventilatory threshold in trained cyclists.  相似文献   

3.
It has been identified that the peroneus longus presents a regional activity. Specifically, a greater activation of the anterior and posterior compartments has been observed during eversion, whereas a lower activation of the posterior compartment has been reported during plantarflexion. In addition to myoelectrical amplitude, motor unit recruitment can be inferred indirectly from muscle fiber conduction velocity (MFCV). However, there are few reports of MFCV of the regions that make up a muscle, and even less, MFCV of the peroneus longus compartments. This study aimed to analyze the MFCV of peroneus longus compartments during eversion and plantarflexion. Twenty-one healthy individuals were assessed. High-density surface electromyography was recorded from the peroneus longus during eversion and plantarflexion at 10%, 30%, 50%, and 70% of maximal voluntary isometric contraction. The posterior compartment presented a lower MFCV than the anterior compartment during plantarflexion, and both compartments did not show differences in MFCV during eversion; however, the posterior compartment showed an increase in MFCV during eversion compared to plantarflexion. Differences observed in the MFCV of the peroneus longus compartments could support a regional activation strategy and, to some extent, explain different motor unit recruitment strategies of the peroneus longus during ankle movements.  相似文献   

4.
5.
A doublet is defined as two consecutive discharges of a motor unit occurring at short time interval between each other (e.g., <20 ms). In this paper, we propose a method for the estimation of muscle fiber conduction velocity (CV) from two partly overlapping action potentials generated by the same motor units. The method is based on the minimization of the mean square error between time-filtered versions of two surface EMG signals recorded along the direction of muscle fibers. The minimization is performed over the filter parameters that define the two propagation delays. The method was tested on simulated and experimental signals. Simulation results showed that the method is only in some cases superior to the simpler peak approach, due to limitations in the ideal model used for the algorithm development. However, application to experimental signals that mimic doublet motor unit discharges showed a substantial improvement in estimation quality of the new method with respect to the peak method.  相似文献   

6.
The spatial distributions of muscle innervation zone (IZ) and muscle fiber conduction velocity (CV) were examined in nine healthy young male participants. High-density surface electromyography (EMG) was collected from the biceps brachii muscle when subjects performed isometric elbow flexions at 20% to 80% of the maximal voluntary contraction (MVC). A total of 9498 samples of IZs were identified and CVs were calculated using the Radon transform. The center and width of IZ sample distribution were compared within four different force levels and six medial to lateral electrode column positions using repeated measures ANOVA and multiple comparison tests. Significant shifts of IZ center were observed in the medial columns (Columns 5, 6, and 7) compared with the lateral columns (Columns 3 and 4) (p < 0.05). Similarly, significant differences in the IZ width were found in Column 7 and 8 compared to Column 3 (p < 0.05). In contrast, muscle CV was unaffected by column position. Instead, muscle CV was faster at 40% and 80% MVC compared to 20% MVC (p < 0.05). The findings of this study add further insights into the physiological properties of the biceps brachii muscle.  相似文献   

7.
To estimate muscle fiber conduction velocity (MFCV), the normalized peak-averaging technique was developed along with complementary software and reported in a previous study. Electromyograms were recorded from the vicinity of end-plate zones (EMG data 1) and a site farther from the end-plates and distal tendons (EMG data 2) of biceps brachii muscles using surface array electrodes during 50% maximal voluntary isometric contractions in ten healthy volunteers. The MFCV values obtained with normalized peak-averaging technique were compared to those obtained with the cross-correlation technique and examined by computer simulation of the MFCV distribution. The MFCV values obtained with normalized peak-averaging technique highly correlated with those obtained with cross-correlation technique in both EMG data 1 and EMG data 2. It was also confirmed that MFCV values obtained from EMG data 1 were distributed much more widely than those obtained from EMG data 2. These results show the clinical usefulness of normalized peak-averaging technique for the detailed assessment of MFCV.  相似文献   

8.
To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.  相似文献   

9.

Objectives:

To examine the relationship between the biceps brachii muscle innervation zone (IZ) width and the mean muscle fiber conduction velocity (MFCV) during a sustained isometric contraction.

Methods:

Fifteen healthy men performed a sustained isometric elbow flexion exercise at their 60% maximal voluntary contraction (MVC) until they could not maintain the target force. Mean MFCV was estimated through multichannel surface electromyographic recordings from a linear electrode array. Before exercise, IZ width was quantified. Separate non-parametric one-way analyses of variance (ANOVAs) were used to examine whether there was a difference in each mean MFCV variable among groups with different IZ width. In addition, separate bivariate correlations were also performed to examine the relationships between the IZ width and the mean MFCV variables during the fatiguing exercise.

Results:

There was a significant difference in the percent decline of mean MFCV (%ΔMFCV) among groups with different IZ width (χ2 (3)=11.571, p=0.009). In addition, there was also a significant positive relationship between the IZ width and the %ΔMFCV (Kendall’s tau= 0.807; p<0.001).

Conclusions:

We believe that such relationship is likely influenced by both muscle fiber size and the muscle fiber type composition.  相似文献   

10.
In 20 healthy subjects (10 males and 10 females) aged between 24 and 45, the conduction velocity (CV) of excitation along muscle fibers was measured in m. biceps brachii muscle using level averaging of interference electromyograms (EMGs) recorded by branched and monopolar surface electrodes. The measured CV, recorded with both monopolar and branched electrodes, were essentially equal (p < 0.05) at all different muscle tensions (10, 25, 50, and 75% of maximal voluntary contractions (MVCs)) and for all investigated healthy subjects. The CV was significant higher (p < 0.05) at 50 and 75% compared to 10 and 25% of MVC. In branched averaged potentials (AvPs), the terminal positive phase was suppressed. The monopolar AvPs were with waveform similar to those of motor units potentials and the parameters of the phases of different potentials (including the terminal positive one) may give additional information on functional state of muscles.The level-triggered averaging of the interference EMG recorded from the skin surface by branched electrodes is an adequate noninvasive method for measuring the propagation velocity of excitation along muscle fibers and for evaluating changes in the muscle functional state.  相似文献   

11.
Before using electromyographic (EMG) variables such as muscle fiber conduction velocity (MFCV) and the mean or median frequency (MDF) of an EMG power spectrum as indicators of muscular fatigue during dynamic exercises, it is necessary to determine the influence of a joint angle, contraction force and contraction speed on the EMG variables. If these factors affect the EMG variables, their influence must be removed or compensated for before discussing fatigue. The vastus lateralis of eight normal healthy male adults was studied. EMG signals during non-fatiguing dynamic knee extension exercises were detected with a three-bar active surface electrode array. EMG variables were calculated from the detected signals and compared with the angle of the knee joint, the extension torque and the extension speed. The extension torque was set at four levels with 10% intervals between 40 and 70% of the maximum voluntary contraction. The extension speed was set at five levels with 60 degrees /s intervals between 0 and 240 degrees /s. Because the joint angle unsystematically affected the MFCV, EMG variables at a given joint angle were extracted for comparison. The influence of the extension torque and speed on the extracted EMG variables was clarified with an ANOVA and a regression analysis. The statistical analyses showed that MFCV increased with the extension torque but did not depend on the extension speed. In contrast, MDF was independent of the extension torque but was dependent on the extension speed. MDF thus showed a behavior different from that of MFCV. It became clear that if MFCV is used as an indicator of muscular fatigue during dynamic exercises, it is at least necessary to extract MFCV at a predetermined joint angle and then remove the influence of extension torque on MFCV.  相似文献   

12.
The motor unit twitch torque is modified by sustained contraction, but the association to changes in muscle fiber electrophysiological properties is not fully known. Thus twitch torque, muscle fiber conduction velocity, and action potential properties of single motor units were assessed in 11 subjects following an isometric submaximal contraction of the tibialis anterior muscle until endurance. The volunteers activated a target motor unit at the minimum discharge rate in eight 3-min-long contractions, three before and five after an isometric contraction at 40% of the maximal torque, sustained until endurance. Multichannel surface electromyogram signals and joint torque were averaged with the target motor unit potential as trigger. Discharge rate (mean +/- SE, 6.6 +/- 0.2 pulses/s) and interpulse interval variability (33.3 +/- 7.0%) were not different in the eight contractions. Peak twitch torque and recruitment threshold increased significantly (93 +/- 29 and 12 +/- 5%, P <0.05) in the contraction immediately after the endurance task with respect to the preendurance values (0.94 +/- 0.26 mN.m and 3.7 +/- 0.5% of the maximal torque), whereas time to peak of the twitch torque did not change (74.4 +/- 10.1 ms). Muscle fiber conduction velocity decreased and action potential duration increased in the contraction after the endurance (6.3 +/- 1.8 and 9.8 +/- 1.8%, respectively, P <0.05; preendurance values, 3.9 +/- 0.2 m/s and 11.1 +/- 0.8 ms), whereas the surface potential peak-to-peak amplitude did not change (27.1 +/- 3.1 microV). There was no significant correlation between the relative changes in muscle fiber conduction velocity or surface potential duration and in peak twitch torque (R2= 0.04 and 0.10, respectively). In conclusion, modifications in peak twitch torque of low-threshold motor units with sustained contraction are mainly determined by mechanisms not related to changes in action potential shape and in its propagation velocity.  相似文献   

13.
The aims of this study are (1) to demonstrate that multi-channel surface electromyographic (EMG) signals can be detected with negligible artifacts during fast dynamic movements with an adhesive two-dimensional (2D) grid of 64 electrodes and (2) to propose a new method for the estimation of muscle fiber conduction velocity from short epochs of 2D EMG recordings during dynamic tasks. Surface EMG signals were collected from the biceps brachii muscle of four subjects with a grid of 13 × 5 electrodes during horizontal elbow flexion/extension movements (range 120–170°) at the maximum speed, repeated cyclically for 2 min. Action potentials propagating between the innervation zone and tendon regions could be detected during the dynamic task. A maximum likelihood method for conduction velocity estimation from the 2D grid using short time intervals was developed and applied to the experimental signals. The accuracy of conduction velocity estimation, assessed from the standard deviation of the residual of the regression line with respect to time, decreased from (range) 0.20–0.33 m/s using one column to 0.02–0.15 m/s when combining five columns of the electrode grid. This novel method for estimation of muscle fiber conduction velocity from 2D EMG recordings provides an estimate which is global in space and local in time, thus representative of the entire muscle yet able to track fast changes over the execution of a task, as is required for assessing muscle properties during fast movements.  相似文献   

14.
Muscle fiber conduction velocity (MFCV) gives critical information on neuromuscular control and can be considered a size principle parameter, being suggestive of motor unit recruitment strategies. MFCV has been recently measured during constant-load sub-maximal cycling exercise and was found to correlate positively with percentage of type I myosin heavy chain.The aim of this study was to test the hypothesis that MFCV measured during an incremental cycling test using surface electromyography (sEMG), can be sensitive to the different metabolic requests elicited by the exercise. In particular, the relationship between ventilatory threshold (T-vent), VO2max and MFCV was explored.Eleven male physically active subjects (age 30 ± 9 years) undertook a 1-min incremental cycling test to exhaustion. T-vent and VO2max were measured using an open circuit breath by breath gas analyzer. The sEMG was recorded from the vastus lateralis muscle with an adhesive 4-electrodes array, and the MFCV was computed on each sEMG burst over the last 30-s of each step.The mean VO2max obtained during the maximal test was 53.32 ± 2.33 ml kg?1 min?1, and the T-vent was reached at 80.77 ± 3.49% of VO2max. In all subjects reliable measures of MFCV were obtained at every exercise intensity (cross correlation values >0.8). MFCV increased linearly with the mechanical load, reaching a maximum value of 4.28 ± 0.67 m s?1 at an intensity corresponding to the T-vent. Thereafter, MFCV declined until maximal work intensities. This study demonstrates that MFCV can be used as non-invasive tool to infer MUs recruitment/derecruitment strategies even during dynamic exercise from low to maximal intensities.  相似文献   

15.
Muscle fiber conduction velocity (MFCV) provides indications on motor unit recruitment strategies due to the relation between conduction velocity and fiber diameter. The aim of this study was to investigate MFCV of thigh muscles during cycling at varying power outputs, pedal rates, and external forces. Twelve healthy male participants aged between 19 and 30 yr cycled on an electronically braked ergometer at 45, 60, 90, and 120 rpm. For each pedal rate, subjects performed two exercise intensities, one at an external power output corresponding to the previously determined lactate threshold (100% LT) and the other at half of this power output (50% LT). Surface electromyogram signals were detected during cycling from vastus lateralis and medialis muscles with linear adhesive arrays of eight electrodes. In both muscles, MFCV was higher at 100% LT compared with 50% LT for all average pedal rates except 120 rpm (mean +/- SE, 4.98 +/- 0.19 vs. 4.49 +/- 0.18 m/s; P < 0.001). In all conditions, MFVC increased with increasing instantaneous knee angular speed (from 4.14 +/- 0.16 to 5.08 +/- 0.13 m/s in the range of instantaneous angular speeds investigated; P < 0.001). When MFCV was compared at the same external force production (i.e., 90 rpm/100% LT vs. 45 rpm/50% LT, and 120 rpm/100% LT vs. 60 rpm/50% LT), MFCV was higher at the faster pedal rate (5.02 +/- 0.17 vs. 4.64 +/- 0.12 m/s, and 4.92 +/- 0.19 vs. 4.49 +/- 0.11 m/s, respectively; P < 0.05) due to the increase in inertial power required to accelerate the limbs. It was concluded that, during repetitive dynamic movements, MFCV increases with the external force developed, instantaneous knee angular speed, and average pedal rate, indicating progressive recruitment of large, high conduction velocity motor units with increasing muscle force.  相似文献   

16.
Somatosympathetic reflexes were studied in young hyperinsulinemic, insulin-resistant (Zucker fatty) rats (ZFR) and a related control (Zucker lean) strain (ZLR). Glucose metabolism was characterized by minimal model analysis of intravenous glucose tolerance test data. Seven-week-old ZFR (n=18) and ZLR (n=17) were studied under pentobarbital anesthesia. Mean body weight and plasma glucose and insulin concentration were significantly greater (P<0.05) in ZFR than in ZLR, whereas basal values of mean arterial pressure (MAP) and heart rate (HR) were not significantly different. Increments of MAP (DeltaMAP) and HR (DeltaHR) elicited by electrical stimulation of the sciatic nerve (5-s trains of 100 pulses, 0.5-ms pulse duration, 100- to 400-microA pulse intensity) were significantly higher (ANOVA, P<0.05) in ZFR at each level of stimulus intensity. Regression analysis showed a linear increase in DeltaMAP and DeltaHR with increasing sciatic nerve stimulus intensity. Pressor responses to phenylephrine after ganglionic blockade demonstrated that vascular reactivity to adrenergic stimulation is not increased in ZFR compared with ZLR. Thus this factor does not contribute to enhancement of somatosympathetic reflexes observed in this strain. Insulin sensitivity in ZFR was one-fourth (P<0.05) that in ZLR. These results suggest that stronger sympathetic nervous reactivity in ZFR is associated with a severe insulin-resistant state before the onset of hypertension and support the hypothesis that insulin-mediated stimulation of the sympathetic nervous system is involved in the development of cardiovascular diseases related to alterations of glucose metabolism.  相似文献   

17.
18.
The theory developed in this paper shows that the propagation of spike potential along a nerve fiber and the conduction of an electric wave along an inert inorganic conductor follow a common quantitative relationship. This result gives further support to the belief that propagation of excitation is an electrical process. The basic idea of the theory is derived from the consideration that velocity has, by its mathematical definition, a local meaning; conduction in a nerve is completely determined by the local characteristics of the latter, as well as those of the wave. The final formula derived does not make use of any other field of science beyond the fundamental principles of electricity. It gives the conduction velocity in terms of the electric characteristics of the fiber and of the duration of the spike potential. The formula is in agreement with the known dependence of the conduction velocity on various parameters characterizing the axon. The computed velocity agrees with the measured ones on the squid giant axon, crab nerve axon, frog muscle fiber and Nitella cell. The membrane inductance appears as a velocity controling agent which prevents also a possible distortion of the spike potential during conduction. The structural meaning of the electric characteristics of the axon membrane is discussed from the viewpoint of the diffusion theory. A formula for the velocity of spread of the electrotonus is also derived.  相似文献   

19.
The sinoatrial (SA) and atrioventricular (AV) nodes are specialized centers of the heart conduction system and are composed of muscle cells with distinctive morphological and electrophysiological properties. We report here results of immunofluorescence and immunoperoxidase studies on the bovine heart showing that a large number of SA and AV nodal cells share a distinct type of myosin heavy chain (MHC) which is not found in other myocardial cells and can thus be used as a cell-type-specific marker. The antibody used in this study was raised against fetal skeletal myosin and reacted with fetal skeletal but not with adult skeletal MHCs. Both atrial and ventricular fibers, as well as fibers of the ventricular conduction tissue were unlabeled by this antibody. Specific reactivity was exclusively seen in most cells in the central portions of the SA and AV nodes and rare cells in perinodal areas. However, a number of nodal cells, particularly those located in the peripheral nodal regions, were unreactive with this antibody. The myosin composition of nodal tissues was also explored using two antibodies reacting specifically with alpha-MHC, the predominant atrial isoform, and beta-MHC, the predominant ventricular isoform. Most nodal cells were reactive for alpha-MHC and a number of them also for beta-MHC. Variation in reactivity with the two antibodies was also observed in perinodal areas: at these sites a population of large fibers reacted exclusively for beta-MHC. These findings point to the existence of muscle cell heterogeneity with respect to myosin composition both in nodal and perinodal tissues.  相似文献   

20.
The present study was designed to determine whether the degree and kind of adaptation of a muscle fiber to a functional overload (FO) are determined by properties that are intrinsic to that fiber. The study also addresses the question of the capability of fibers to maintain a normal level of coordination of proteins per fiber as fiber volume changes dramatically. The plantaris muscle of six adult female cats was overloaded for 12 wk by bilateral synergist removal. Plantaris muscle fiber mean size doubled after FO, although some very small fibers that stained dark for adenosinetriphosphatase (ATPase) were observed in some of the FO muscles. There appeared to be no change in total succinate dehydrogenase activity per fiber. A reduction in succinate dehydrogenase activity per unit volume was observed in a substantial number of fibers, reflecting a disproportionate increase in fiber volume relative to mitochondrial volume. In contrast, total alpha-glycerophosphate dehydrogenase activity and actomyosin ATPase activity increased as fiber size increased, whereas there was no change in alpha-glycerophosphate dehydrogenase and ATPase activities per unit volume. Control and FO muscle fibers generally expressed either a fast or slow myosin heavy chain type, but in some cases FO muscle fibers expressed both fast and slow myosin heavy chains. The persistence of variability in fiber sizes and enzyme activities in fibers of overloaded muscles suggests a wide range in the adaptive potential of individual fibers to FO. These data indicate that a severalfold increase in cell size may occur without significant qualitative changes in the coordination of protein regulation associated with metabolic pathways and ATP utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号