首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) and its subunits (large subunits = LSU, small subunits = SSU) were isolated from threeCapsella spp. by gel electrophoresis and polypeptide composition was analyzed by isoelectric focusing (IEF) in the presence of 8M urea. The described techniques are recommended for large scale systematic studies. Multiple IEF banding patterns of the SSU are probably the outcome of a heterogenous multigene family. The two diploid speciesC. rubella andC. grandiflora show an identical IEF pattern and could be differentiated from the putative allotetraploidC. bursa-pastoris only by the SSU banding pattern. Uniqueness of some SSU bands in the tetraploid and in the two diploid species, respectively, may indicate an ancient alloploid origin of tetraploidC. bursa-pastoris followed by events leading to divergences in the genomes of the allotetraploid and its presumed diploid progenitors after the hybridization event (SSU gene elimination, acquisition of new SSU genes).  相似文献   

2.
The isolated leaf proteins of lucerne (Medicago sativa L. and M. falcata L.) were fractionated by Sepharose 6B column chromatography. Analysis of fractionated proteins indicated that the 2nd peak component was almost entirely ribulose 1,5 bisphosphate carboxylase-oxygenase (Rubisco) which represented 57% of the total recovered protein.Rubisco yielded one large subunit (LSU) and one small subunit (SSU) polypeptide after SDS gel electrophoresis.Isoelectric focusing of the SSU of Rubisco from genotypes of M. sativa cv. Hunter River (HR), Hairy Peruvian (HP) and of M. falcata (MF) showed two SSU components for HR and HP, and three components for MF. Most components of genotypes were located in the alkaline region of the gel. While the pIs of the SSU components of HR and HP were identical they differed from those of the SSU of MF thus demonstrating heterogeneity for SSU in Medicago.It is suggested that the alkaline nature of SSU may have some adaptive physiological significance.Abbreviations Rubisco ribulose bisphosphate 1,5-carboxylase-oxygenase - LSU large subunit - SSU small subunit - HR Hunter River - HP Hairy Peruvian - MF Medicago falcata - SDS Sodium dodecyl sulphate - TCA trichloracetic acid  相似文献   

3.
R. Oelmüller  G. Dietrich  G. Link  H. Mohr 《Planta》1986,169(2):260-266
Phytochrome-controlled appearance of ribulose-1,5-bisphosphate carboxylase (RuBP-Case) and its subunits (large subunit LSU, small subunit SSU) was studied in the cotyledons of the mustard (Sinapis alba L.) seedling. The main results were as follows: (i) Control of RuBPCase appearance by phytochrome is a modulation of a process which is turned on by an endogenous factor between 30 and 33 h after sowing (25° C). Only 12 h later the process begins to respond to phytochrome. (ii) The rise in the level of RuBP-Case is the consequence of a strictly coordinated synthesis de novo of the subunits. (iii) While the levels of translatable mRNA for SSU are compatible with the rate of SSU synthesis the relatively high LSU mRNA levels are not reflected in the rates of in-vivo LSU or RuBPCase syntheses. (iv) Gene expression is also abolished in the case of nuclear-encoded SSU if intraplastidic translation and concomitant plastidogenesis is inhibited by chloramphenicol, pointing to a plastidic factor as an indispensable prerequisite for expression of the SSU gene(s). (v) Regarding the control mechanism for SSU gene expression, three factors seem to be involved: an endogenous factor which turns on gene expression, phytochrome which modulates gene expression, and the plastidic factor which is an indispensable prerequisite for the appearance of translatable SSU mRNA.Abbreviations CAP chloramphenicol - cFR continuous farred light - LSU large subunit of RuBPCase - NADP-GPD NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) - Pfr far-red-absorbing form of phytochrome - pSSU precursor of SSU - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase  相似文献   

4.
In the sexual interspecific cross, Nicotiana rustica L.xN. tabacum L., N. rustica can serve as the female but not as the male parent. By fusion of protoplasts, the barrier to fertilization was overcome and somatic hybrids containing N. tabacum cytoplasm were produced as shown by isoelectric focusing of the Fraction-1 protein (F-1-protein). All somatic hybrids displayed polypeptides of the large subunit of F-1 protein (which is coded by the chloroplast genome) characteristic of only one or the other parental species. Two hybrids had large subunits of the N. tabacum type and two hybrids had those of the N. rustica type. Three hybrids contained three smallsubunit polypeptides (coded by the nuclear genome), one being characteristic of N. rustica, one characteristic of N. tabacum, and one with an isoelectric point common to both species. A fourth hybrid contained only two small-subunit polypeptides of the N. tabacum type but in a F-1 protein macromolecule whose large subunits were of the N. rustica type. One somatic hybrid was self-fertile and its F2 progeny contained large- and small-subunit polypeptides indistinguishable in their isoelectric points from those in the parent F1 hybrid. All somatic hybrids showed an aneuploid chromosome number and morphological characteristics intermediate between those of N. rustica and N. tabacum.  相似文献   

5.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   

6.
In this study, evidence for at least three independent losses of photosynthesis in the freshwater cryptophyte genus Cryptomonas is presented. The phylogeny of the genus was inferred by molecular phylogenetic analyses of the nuclear internal transcribed spacer 2 (nuclear ITS2), partial nuclear large subunit ribosomal DNA (LSU rDNA), and nucleomorph small subunit ribosomal DNA (SSU rDNA, NM). Both concatenated and single data sets were used. In all data sets, the colorless Cryptomonas strains formed three different lineages, always supported by high bootstrap values (maximum parsimony, neighbor joining and maximum likelihood) and posterior probabilities (Bayesian analyses). The three leukoplast-bearing lineages displayed differing degrees of accelerated evolutionary rates in nuclear and nucleomorph rDNA. Also an increase in A+T-content in highly variable regions of the nucleomorph SSU rDNA was observed in one of the leukoplast-bearing lineages.This article contains three online-only supplementary tables.Reviewing Editor: Dr. Yves Van de Peer  相似文献   

7.
Knopf JA  Shapira M 《Planta》2005,222(5):787-793
Oxidative stress in plants and green algae has multiple damaging effects, and leads to the degradation of Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco). We recently showed for the green algae Chlamydomonas reinhardtii that in response to a photo-oxidative stress, nascent synthesis of its chloroplast encoded large subunit (LSU) stops. In parallel, newly synthesized small subunits (SSU) that are encoded by the nucleus are rapidly degraded, thus assembly of new holoenzyme particles is inhibited. Here we show that under extreme oxidizing conditions, the steady-state level of the SSU is also reduced. Cleavage of the LSU under oxidizing conditions is well established, and we show, using sucrose gradients, that the resulting fragments of the LSU co-exist as parts of the holoenzyme. In parallel, we demonstrate the selective in-vivo formation of high-density aggregates of Rubisco particles, in response to oxidative stress. Given the known tendency of unassembled LSUs to aggregate, we propose that the rapid elimination of the SSU during oxidative stress along with the fragmentation of the LSU and formation of intra-protein disulfide bridges, leads to the observed aggregation of Rubisco particles. Indeed, we note here a substantially decreased ratio of SSU in the aggregated Rubisco particles. We also observed that this aggregation marks the viability threshold of C. reinhardtii cells exposed to oxidative stress.  相似文献   

8.
The analysis of the subunit polypeptide composition of Fraction 1 protein provides information on the expression of both chloroplast and nuclear genomes. Fraction 1 protein, isolated from leaves of the somatic hybrid plants derived from the fusion of protoplasts of Petunia parodii and P. parviflora, was analyzed for its subunit polypeptide composition by isoelectric focusing in 8 M urea. The fraction 1 protein enzyme oligomer in the somatic hybrid plants contained small subunits resulting from the expression of both parental nuclear genomes, but probably only one of the parental large subunits, namely that of P. parodii. The relevance of such somatic hybrid material for the study of nucleocytoplasmic interrelationships is discussed, as well as the use of these fraction 1 protein isoelectric focusing patterns for the analysis of taxonomic relationships in Petunia.  相似文献   

9.
10.
The large- and small-subunit polypeptide composition of fraction 1 protein contained in seven species of Lycopersicon and Solanum pennellii was determined by electrofocusing. The eight species of protein had large subunits composed of three polypeptides separated by about 0.05 pH unit, but there was no difference in the isoelectric points of the clusters of three polypeptides. By this criterion, no surviving mutations have appeared in the extranuclear DNA coding for the cluster of large-subunit polypeptides during a period of evolution which generated the eight species of plants. The genus Lycopersicon appears to be much younger than its sister genus Nicotiana in the family Solanaceae, where four types of polypeptide clusters have evolved. Three different small-subunit polypeptides whose isoelectric points are coded by nuclear DNA have arisen among the seven Lycopersicon species, and L. hirsutum and S. pennellii have proteins containing single polypeptides and are therefore considered older than L. chilense, L. chimielewskii, and L. parviflorum, whose proteins contain two polypeptides. L. cheesemanii, L. pimpinellifolium, and L. esculentum (and probably L. peruvianum) seem to be the most recently evolved species since their fraction 1 proteins have small subunits composed of three polypeptides.This research was supported by NSF Grant 75-07368 and Contract No. EY-76-S-03-0034, P. A. #8, from the Department of Energy.  相似文献   

11.
脆弱刚毛藻(Cladophora fracta)是一种大型丝状绿藻,生境分布广泛。然而,对于岩溶泉域分布的刚毛藻研究较少,它们的遗传多样性、生物地理亲缘性和生理特性都有待于深入研究。该研究对我国北方地区五个典型岩溶泉域的50个脆弱刚毛藻样本进行了形态学和分子系统学描述。主要研究目标:(1)对我国北方地区五个典型岩溶泉的刚毛藻生境进行描述;(2)根据形态学特征和分子序列对藻体进行鉴定;(3)探究生境对藻体生理特性的影响。结果表明:基于SSU和LSU序列的结果,发现所分析的50株刚毛藻个体为同一种,同时还发现了13个不同的核糖体基因型。基于SSU和LSU的系统发育树,刚毛藻属均未能形成单系分支,分布在三个不同的分支上。13个样本基因型在SSU和LSU树中的位置相似,与Cladophora vagabunda有很高的序列同源性,但是形态特征却差异很大。从显微结构结果来看,五个岩溶泉域采集到的刚毛藻在细胞直径上无显著差异,藻体的形态特征与脆弱刚毛藻相一致。但是,岩溶泉域采集的藻体细胞直径比文献报道中在湖泊和河流中采集的脆弱刚毛藻直径要大。另外,仅在两个地点(XA和ST)采集的标本中发现有假根状分枝。因此,基于形态学和分子序列的结果,将这五个泉域的刚毛藻鉴定为脆弱刚毛藻(Cladophora fracta)。  相似文献   

12.
The 22,704-bp circular mitochondrial DNA (mtDNA) of the chlamydomonad alga Chlorogonium elongatum was completely cloned and sequenced. The genome encodes seven proteins of the respiratory electron transport chain, subunit 1 of the cytochrome oxidase complex (cox1), apocytochrome b (cob), five subunits of the NADH dehydrogenase complex (nad1, nad2, nad4, nad5, and nad6), a set of three tRNAs (Q, W, M), and the large (LSU)- and small (SSU)-subunit ribosomal RNAs. Six group-I introns were found, two each in the cox1, cob, and nad5 genes. In each intron an open reading frame (ORF) related to maturases or endonucleases was identified. Both the LSU and the SSU rRNA genes are split into fragments intermingled with each other and with other genes. Although the average A + T content is 62.2%, GC-rich clusters were detected in intergenic regions, in variable domains of the rRNA genes, and in introns and intron-encoded ORFs. A comparison of the genome maps reveals that C. elongatum and Chlamydomonas eugametos mtDNAs are more closely related to one another than either is to Chlamydomonas reinhardtii mtDNA. Received: 3 November 1997 / Accepted: 12 January 1998  相似文献   

13.
The chemolithoautotroph, Arthrobacter sp.15b oxidizes arsenite to arsenate using a membrane bound arsenite oxidase. The enzyme arsenite oxidase is purified to its homogeneity and identified using MALDI-TOF MS analysis. Upon further characterization, it was observed that the enzyme is a heterodimer showing native molecular mass as ~100 kDa and appeared as two subunits of ~85 kDa LSU and 14 kDa SSU on SDS–PAGE. The V max and K m values of the enzyme was found to be 2.45 μM (AsIII)/min/mg) and 26 μM, respectively. The purified enzyme could withstand wide range of pH and temperature changes. The enzyme, however, gets deactivated in the presence of 1 mM of DEPC suggesting the involvement of histidine at the binding site of the enzyme. The peptide analysis of large sub unit of the enzyme showed close match with the arsenite oxidases of Burkholderia sp. YI019A and arsenite oxidase, Mo-pterin containing subunit of Alcaligenes faecalis. The small subunit, however, differed from other arsenite oxidases and matched only with 2Fe–2S binding protein of Anaplasma phagocytophilum. This indicates that Rieske subunits containing the iron–sulfur clusters present in the large as well as small subunits of the enzyme are integral part of the protein.  相似文献   

14.
15.
Summary Variation in the arachin polypeptides of groundnut genotypes was observed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Three regions could be observed on the electropherogram. Region 1, corresponding to conarachin, did not show any variation; region 2, consisting of arachin acidic subunits, showed variation; region 3, containing the arachin basic subunits, did not show any variation. There are four varietal classes of arachin polypeptide patterns: class A comprised three acidic subunits of arachin of molecular weights 47.5, 45.1 and 42.6 kd and a basic subunit of 21.4 kd; class B, with three acidic subunits of molecular weights 47.5, 45.1 and 41.2 kd and a basic subunit of 21.4 kd; class C of an additive pattern of class A and class B; class D, of two acidic polypeptides of 47.5, 45.1 kd and the basic 21.4 kd subunit. Of the 90 genotypes studied, 73% belong to class A, 15% to class B and 6% each to class C and D. Analysis of F2 seeds from a cross between class A and class B genotypes showed that the two polypeptides (42.6 kd and 41.2 kd) are coded by nonallelic genes and also revealed that class C and class D patterns arose as a result of hybridisation between class A and class B. A. monticola, the progenitor of A. hypogaea, showed a pattern similar to the additive pattern of class A and class B while some diploid Arachis species had the 41.2 kd polypeptide. Based on arachin polypeptide patterns the probable origin of A. hypogaea has been suggested.  相似文献   

16.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

17.
A morphological and molecular examination of the genus Monomorphina was conducted on 46 strains isolated mainly from Korea. The strains were divided into two types based on morphological data: Monomorphina aenigmatica and M. pyrum ‐ like species. Phylogenetic analysis based on a combined data set of nuclear SSU and LSU and plastid SSU and LSU rDNA showed that the strains could be divided into eight clades: Clade A of M. aenigmatica, Clade B of the isolates (M. pyropsis) from Michigan, USA, Clade C of M. pseudopyrum, Clade D of the isolates (M. pyroria) from Bremen, Germany, Clade E of M. soropyrum, Clade F of M. pyriformis, Clade G of M. parapyrum, and Clade H of M. pyrum. Six of these clades came from strains that would be considered M. pyrum sensu Kosmala et Zakry?, one of which could be recognized as a traditional species (M. pyrum) and five were designated as new species; each species had unique molecular signatures at nr SSU rDNA helix 17 and 17′ and spacer E23_14′‐E23_15. The species of Monomorphina had a wide range of genetic diversity with interspecies sequence similarity of 85.6%–97.1% and intraspecies similarity of 96.4%–99.9%. Our results suggested that genetic diversity found in the M. pyrum complex justifies the recognition of a minimum of eight species within this genus, based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

18.
The photoregulation of chloroplast development in pea leaves has been studied by reference to three polypeptides and their mRNAs. The polypeptides were the large subunit (LSU) and the small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO), and the light-harvesting chlorophyll a/b protein (LHCP). The polypeptides were assayed by a sensitive radioimmune assay, and the mRNAs were assayed by hybridization to cloned DNA probes. LSU, LSU mRNA, and LHCP mRNA were detectable in etiolated seedlings but LHCP, SSU, and SSU mRNA were at or below the limit of detection. During the first 48 hr of de-etiolation under continuous white light, the mRNAs for LSU, SSU, and LHCP increased in concentration per apical bud by about 40-fold, at least 200-fold, and about 25-fold, respectively, while the total RNA content per apical bud increased only 3.5-fold. In the same period, the LSU, SSU, and LHCP contents per bud increased at least 60-, 100-, and 200-fold, respectively. The LHCP increased steadily in concentration during de-etiolation, whereas the accumulation LSU, SSU, and SSU mRNA showed a 24-hr lag. The accumulation of SSU, SSU mRNA, and LHCP mRNA showed classical red/far-red reversibility, indicating the involvement of phytochrome in the regulatory mechanism. LSU and LSU mRNA were induced equally well by red and far-red light. The LHCP failed to accumulate except under continuous illumination. These results indicate that the accumulation of SSU is controlled largely through the steady-state level of its mRNA, which is in turn almost totally dependent on light as an inducer and on phytochrome as one of the photoreceptors. The accumulation of LSU is largely but not totally determined by the level of its mRNA, which appears to be under strong photoregulation, which has yet to be shown to involve phytochrome. Phytochrome is involved in the regulation of LHCP mRNA levels but substantial levels of the mRNA also occur in the dark. LHCP accumulation is not primarily governed by the levels of LHCP mRNA but by posttranslational stabilization in which chlorophyll synthesis plays a necessary but not sufficient role.  相似文献   

19.
Li LR  Sisson VA  Kung SD 《Plant physiology》1983,71(2):404-408
Genetic variability in the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in several Nicotiana species has been characterized by isoelectric focusing patterns. This heritable variation provides an opportunity to examine the functional role of each of these subunits. In this study, specifically designed RuBPCase enzymes composed of identical large subunits but different small subunits were constructed in vivo by interspecific hybridization between the species N. sylvestris, N. tabacum, N. glauca, N. glutinosa, N. plumbaginifolia, and N. tomentosiformis. Small subunit polypeptides were combined to form a sequence of one, two, three, and four polypeptides with the large subunit of N. sylvestris. Kinetic properties of these hybrid enzymes were compared. No differences in the specific activity of either carboxylation or oxygenation nor in Km values for ribulose 1,5-bisphosphate, CO2, or O2 were detected among the RuBPCase enzymes from the various interspecific hybrids. Likewise, the ratio of carboxylation to oxygenation was constant.  相似文献   

20.
Mature green leaves from tobacco (Nicotiana tabacum L.) plants were submitted to contrasting light conditions; half of each leaf was shaded (changed from 60 to 25 mol photons· m-2 ·s-1=LL) and the other half was exposed to higher light (changed from 60 to 360 mol·m-2· s-1=HL) for 24 h. The activity and quantity of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were measured during the first 24 h in each leaf region and the variation was compared with that of small subunit (SSU)-and large subunit (LSU)-mRNA contents determined by a hybridot technique. Each leaf half responded separately to the actual light received. The activity of RuBPCase increased progressively in the HL zones and decreased in the LL zones. The RuBPCase-protein content was not significantly modified during the first 24 h but SSU-mRNA content responded very rapidly to the treatment. Within 2 h a significant difference in SSU mRNA appeared between LL and HL zones: at the end of the photoperiod the content in LL zones was approx. 25% of the initial value. The increase in the exposed zone, however, was not significant, indicating that there was a dissymmetry of the response to variation in incident white light. The LSU-mRNA contents from the same leaf extracts were totally unaffected by the light treatment. No day-night variations were noted in either SSU or LSU mRNAs in control plants.Abbreviation HL high-light irradiance - LL lower-ligh irradiance - LSU large subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU small subunit of RuBPCase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号