首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increase in the dose of the heterochromatin-associated Su(var)3-7 protein of Drosophila augments the genomic silencing of position-effect variegation. We have expressed a number of fragments of the protein in flies to assign functions to the different domains. Specific binding to pericentric heterochromatin depends on the C-terminal half of the protein. The N terminus, containing six of the seven widely spaced zinc fingers, is required for binding to bands on euchromatic arms, with no preference for pericentric heterochromatin. In contrast to the enhancing properties of the full-length protein, the N terminus half has no effect on heterochromatin-dependent position-effect variegation. In contrast, the C terminus moiety suppresses variegation. This dominant negative effect on variegation could result from association of the fragment with the wild type endogenous protein. Indeed, we have found and mapped a domain of self-association in this C-terminal half. Furthermore, a small fragment of the C-terminal region actually depletes pericentric heterochromatin from endogenous Su(var)3-7 and has a very strong suppressor effect. This depletion is not followed by a depletion of HP1, a companion of Su(var)3-7. This indicates that Su(var)3-7 does not recruit HP1 to heterochromatin. We propose in conclusion that the association of Su(var)3-7 to heterochromatin depends on protein-protein interaction mediated by the C-terminal half of the sequence, while the silencing function requires also the N-terminal half containing the zinc fingers.  相似文献   

2.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

3.
F Cléard  M Delattre    P Spierer 《The EMBO journal》1997,16(17):5280-5288
An increase in the dose of the Su(var)3-7 locus of Drosophila melanogaster enhances the genomic silencing of position-effect variegation caused by centromeric heterochromatin. Here we show that the product of Su(var)3-7 is a nuclear protein which associates with pericentromeric heterochromatin at interphase, whether on diploid chromosomes from embryonic nuclei or on polytene chromosomes from larval salivary glands. The protein also associates with the partially heterochromatic chromosome 4. As these phenotypes and localizations resemble those described by others for the Su(var)2-5 locus and its heterochromatin-associated protein HP1, the presumed co-operation of the two proteins was tested further. The effect of the dose of Su(var)3-7 on silencing of a number of variegating rearrangements and insertions is strikingly similar to the effect of the dose of Su(var)2-5 reported by others. In addition, the two loci interact genetically, and the two proteins co-immunoprecipitate from nuclear extracts. The results suggest that SU(VAR)3-7 and HP1 co-operate in building the genomic silencing associated with heterochromatin.  相似文献   

4.
Seum C  Pauli D  Delattre M  Jaquet Y  Spierer A  Spierer P 《Genetics》2002,161(3):1125-1136
The Su(var)3-7 gene, a haplo-suppressor and triplo-enhancer of position-effect variegation (PEV), encodes a zinc finger heterochromatin-associated protein. To understand the role of this protein in heterochromatin and genomic silencing, mutations were generated by homologous recombination. The donor fragment contained a yellow(+) gene and 7.6 kb of the Su(var)3-7 gene inserted between two FRTs. The Su(var)3-7 sequence contained three stop codons flanking an I-SceI cut site located in the 5' half of the gene. Using two different screening approaches, we obtained an allelic series composed of three mutant alleles. The three mutations are dominant suppressors of PEV. One behaves as a null mutation and results in a maternal-effect recessive lethal phenotype that can be rescued by a zygotic paternal wild-type gene. A P transposon zygotically expressing a Su(var)3-7 full-length cDNA also rescues the mutant phenotype. One hypomorphic allele is viable and the pleiotropic phenotype showed by adult flies indicates that rapidly and late dividing cells seem the most affected by reduced amounts of Su(var)3-7 protein. All three mutants were characterized at the molecular level. Each expresses a portion of the Su(var)3-7 protein that is unable to enter the nucleus and bind chromatin.  相似文献   

5.
Su(var)3-9 is a dominant modifier of heterochromatin-induced gene silencing. Like its mammalian and Schizosaccharomyces pombe homologues, Su(var) 3-9 encodes a histone methyltransferase (HMTase), which selectively methylates histone H3 at lysine 9 (H3-K9). In Su(var)3-9 null mutants, H3-K9 methylation at chromocentre heterochromatin is strongly reduced, indicating that SU(VAR)3-9 is the major heterochromatin-specific HMTase in Drosophila. SU (VAR)3-9 interacts with the heterochromatin-associated HP1 protein and with another silencing factor, SU(VAR)3-7. Notably, SU(VAR)3-9-HP1 interaction is interdependent and governs distinct localization patterns of both proteins. In Su(var)3-9 null mutants, concentration of HP1 at the chromocentre is nearly lost without affecting HP1 accumulation at the fourth chromosome. By contrast, in HP1 null mutants SU(VAR)3-9 is no longer restricted at heterochromatin but broadly dispersed across the chromosomes. Despite this interdependence, Su(var)3-9 dominates the PEV modifier effects of HP1 and Su(var)3-7 and is also epistatic to the Y chromosome effect on PEV. Finally, the human SUV39H1 gene is able to partially rescue Su(var)3-9 silencing defects. Together, these data indicate a central role for the SU(VAR)3-9 HMTase in heterochromatin-induced gene silencing in Drosophila.  相似文献   

6.
The Drosophila protein SU(VAR)3–7 is essential for fly viability, chromosome structure, and heterochromatin formation. We report that searches in silico and in vitro for homologues of SU(VAR)3–7 were successful within, but not outside, the Drosophila genus. Protein sequence homology between the distant sibling species Drosophila melanogaster and Drosophila virilis is low, except for the general organization of the protein and three conserved motives: seven widely spaced zinc fingers in the N-terminal half and the BESS and BoxA motives in the C-terminal half of the protein. We have undertaken a fine functional dissection of SU(VAR)3–7 in vivo using transgenes encoding truncations of the protein. BESS mediates interaction of SU(VAR)3–7 with itself, and BoxA is required for specific heterochromatin association. Both are necessary for the silencing properties of SU(VAR)3–7. The seven zinc fingers, widely spaced over the N-terminal half of SU(VAR)3–7, are required for binding to polytene chromosomes. One finger is necessary and sufficient to determine the appropriate chromatin association of the C-terminal half of the protein. Conferring a function to each of the conserved motives allows us to better understand the mode of action of SU(VAR)3–7 in triggering heterochromatin formation and subsequent genomic silencing.  相似文献   

7.
8.
9.
The essential JIL-1 histone H3S10 kinase is a key regulator of chromatin structure that functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of the JIL-1 kinase, two of the major heterochromatin markers H3K9me2 and HP1a spread in tandem to ectopic locations on the chromosome arms. Here we address the role of the third major heterochromatin component, the zinc-finger protein Su(var)3-7. We show that the lethality but not the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-7 gene and that Su(var)3-7 and JIL-1 loss-of-function mutations have an antagonistic and counterbalancing effect on position-effect variegation (PEV). Furthermore, we show that in the absence of JIL-1 kinase activity, Su(var)3-7 gets redistributed and upregulated on the chromosome arms. Reducing the dose of the Su(var)3-7 gene dramatically decreases this redistribution; however, the spreading of H3K9me2 to the chromosome arms was unaffected, strongly indicating that ectopic Su(var)3-9 activity is not a direct cause of lethality. These observations suggest a model where Su(var)3-7 functions as an effector downstream of Su(var)3-9 and H3K9 dimethylation in heterochromatic spreading and gene silencing that is normally counteracted by JIL-1 kinase activity.SU(VAR)3-9, a histone methyltransferase, Su(var)2-5, HP1a, and Su(var)3-7, a 1250-residue zinc-finger protein are all inherent components of pericentric heterochromatin (Rea et al. 2000; Eissenberg and Elgin 2000; Schotta et al. 2002; Delattre et al. 2004; Ebert et al. 2004) and are important factors for silencing of reporter genes by heterochromatic spreading in Drosophila (for review see Weiler and Wakimoto 1995; Girton and Johansen 2008). Su(var)3-9 has been shown to catalyze most of the dimethylation of the histone H3K9 residue which in turn can promote HP1a and Su(var)3-7 recruitment (Schotta et al. 2002; Jaquet et al. 2006). In addition, Su(var)3-9, HP1a, and Su(var)3-7 can directly interact with each other, suggesting a model where interdependent interactions between Su(var)3-9, HP1a, and Su(var)3-7 lead to heterochromatin assembly at pericentric sites (Lachner et al. 2001; Schotta et al. 2002; Elgin and Grewal 2003; Jaquet et al. 2006). Heterochromatin formation in Drosophila is initiated early in development through active removal of H3K4 methylation by the LSD1 demethylase homolog Su(var)3-3 (Rudolph et al. 2007). Subsequently, a developmentally regulated balance between Su(var)3-3 H3K4 demethylase, Su(var)3-9 H3K9 methyltransferase, and RPD3 H3K9 deacetylase activity contribute to conserve the distinction between euchromatic and heterochromatic domains (Rudolph et al. 2007). Thus, highly complex interactions between multiple heterochromatic and euchromatic factors are likely to contribute to the regulation of a dynamic balance between the distinct chromatin environments promoting gene activity and gene silencing.It has recently been demonstrated that activity of the essential JIL-1 histone H3S10 kinase (Jin et al. 1999; Wang et al. 2001) is a major regulator of chromatin structure (Deng et al. 2005; 2008) and that it functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing (Ebert et al. 2004; Zhang et al. 2006; Lerach et al. 2006; Bao et al. 2007). In the absence of the JIL-1 kinase, the major heterochromatin markers H3K9me2 and HP1a spread in tandem to ectopic locations on the chromosome arms with the most pronounced increase on the X chromosomes (Zhang et al. 2006; Deng et al. 2007). However, overall levels of the H3K9me2 mark and HP1a were unchanged, suggesting that the spreading was accompanied by a redistribution that reduces the levels in pericentromeric heterochromatin. Genetic interaction assays demonstrated that the lethality as well as some of the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-9 gene (Zhang et al. 2006; Deng et al. 2007). This is in contrast to similar experiments performed with alleles of the Su(var)2-5 gene where no genetic interactions were detectable between JIL-1 and Su(var)2-5 (Deng et al. 2007) Thus, these findings indicate that while Su(var)3-9 histone methyltransferase activity may be a factor in the lethality and chromatin structure perturbations associated with loss of the JIL-1 histone H3S10 kinase, these effects are likely to be uncoupled from HP1a. However, the potential role of the third major heterochromatin component, Su(var)3-7, was not addressed in these studies. Here we show that Su(var)3-7, like Su(var)3-9, genetically interacts with JIL-1, that reducing the dose of Su(var)3-7 significantly reduces the lethality of JIL-1 null mutants, and that Su(var)3-7 and JIL-1 loss-of-function mutations have an antagonistic and counterbalacing effect on position-effect variegation (PEV).  相似文献   

10.
Westphal T  Reuter G 《Genetics》2002,160(2):609-621
Compact chromatin structure, induction of gene silencing in position-effect variegation (PEV), and crossing-over suppression are typical features of heterochromatin. To identify genes affecting crossing-over suppression by heterochromatin we tested PEV suppressor mutations for their effects on crossing over in pericentromeric regions of Drosophila autosomes. From the 46 mutations (28 loci) studied, 16 Su(var) mutations of the nine genes Su(var)2-1, Su(var)2-2, Su(var)2-5, Su(var)2-10, Su(var)2-14, Su(var)2-15, Su(var)3-3, Su(var)3-7, and Su(var)3-9 significantly increase in heterozygotes or by additive effects in double and triple heterozygotes crossing over in the ri-p(p) region of chromosome 3. Su(var)2-2(01) and Su(var)2-14(01) display the strongest recombinogenic effects and were also shown to enhance recombination within the light-rolled heterochromatic region of chromosome 2. The dominant recombinogenic effects of Su(var) mutations are most pronounced in proximal euchromatin and are accompanied with significant reduction of meiotic nondisjunction. Our data suggest that crossing-over suppression by heterochromatin is controlled at chromatin structure as well as illustrate the possible effects of heterochromatin on total crossing-over frequencies in the genome.  相似文献   

11.
We examined the heterochromatic binding of GAGA factor and proliferation disrupter (Prod) proteins during the cell cycle in Drosophila melanogaster and sibling species. GAGA factor binding to the brownDominant AG-rich satellite sequence insertion was seen at metaphase, however, no binding of GAGA factor to AG-rich sequences was observed at interphase in polytene or diploid nuclei. Comparable mitosis-specific binding was found for Prod protein to its target satellite in pericentric heterochromatin. At interphase, these proteins bind numerous dispersed sites in euchromatin, indicating that they move from euchromatin to heterochromatin and back every cell cycle. The presence of Prod in heterochromatin for a longer portion of the cell cycle than GAGA factor suggests that they cycle between euchromatin and heterochromatin independently. We propose that movement of GAGA factor and Prod from high affinity sites in euchromatin occurs upon condensation of metaphase chromosomes. Upon decondensation, GAGA factor and Prod shift from low affinity sites within satellite DNA back to euchromatic sites as a self-assembly process.  相似文献   

12.
Heterochromatin protein 1 (HP1) proteins, recognized readers of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me), are important regulators of heterochromatin-mediated gene silencing and chromosome structure. In Drosophila melanogaster three histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9: Su(var)3-9, Setdb1, and G9a. To probe the dependence of HP1a binding on H3K9me, its dependence on these three HKMTs, and the division of labor between the HKMTs, we have examined correlations between HP1a binding and H3K9me patterns in wild type and null mutants of these HKMTs. We show here that Su(var)3-9 controls H3K9me-dependent binding of HP1a in pericentromeric regions, while Setdb1 controls it in cytological region 2L:31 and (together with POF) in chromosome 4. HP1a binds to the promoters and within bodies of active genes in these three regions. More importantly, however, HP1a binding at promoters of active genes is independent of H3K9me and POF. Rather, it is associated with heterochromatin protein 2 (HP2) and open chromatin. Our results support a hypothesis in which HP1a nucleates with high affinity independently of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.  相似文献   

13.
A transgene inserted in euchromatin exhibits mosaic expression when targeted by a fusion protein made of the DNA-binding domain of GAL4 and the heterochromatin-associated protein HP1. The silencing responds to the loss of a dose of the dominant modifiers of position-effect variegation Su(var)3-7 and Su(var)2-5, the locus encoding HP1. The genomic environs of the insertion site at 87C1 comprise the dispersed repetitive elements micropia and alphagamma. In the presence of the GAL4-HP1 chimera, the polytene chromosomes of this line form loops between the insertion site of the transgene and six other sections of chromosome 3R, as well as, rarely, with pericentric and telomeric heterochromatin. In contrast to the insertion site of the transgene at 87C, the six loop-forming sites in the euchromatic arm were each previously described as intercalary heterochromatin. Moreover, GAL4-HP1 tethering on one homologue trans-inactivates the reporter on the other. HP1, probably together with other partners, could thus facilitate the coalescence of dispersed middle repetitive sequences, and organize the heterochromatic structure responsible for the variegated silencing of nearby euchromatic genes.  相似文献   

14.
The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var)205 encoding Heterochromatin Protein 1 and Su(var)3–7) and the repeat-associated small interfering RNA (or rasiRNA) silencing pathway (aubergine, homeless, armitage, and piwi). In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA) silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA) silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway.  相似文献   

15.
16.
Post-translational modifications (PTMs) of core histones are important epigenetic determinants that correlate with functional chromatin states. However, despite multiple linker histone H1s PTMs have been identified, little is known about their genomic distribution and contribution to the epigenetic regulation of chromatin. Here, we address this question in Drosophila that encodes a single somatic linker histone, dH1. We previously reported that dH1 is dimethylated at K27 (dH1K27me2). Here, we show that dH1K27me2 is a major PTM of Drosophila heterochromatin. At mitosis, dH1K27me2 accumulates at pericentromeric heterochromatin, while, in interphase, it is also detected at intercalary heterochromatin. ChIPseq experiments show that >98% of dH1K27me2 enriched regions map to heterochromatic repetitive DNA elements, including transposable elements, simple DNA repeats and satellite DNAs. Moreover, expression of a mutated dH1K27A form, which impairs dH1K27me2, alters heterochromatin organization, upregulates expression of heterochromatic transposable elements and results in the accumulation of RNA:DNA hybrids (R-loops) in heterochromatin, without affecting H3K9 methylation and HP1a binding. The pattern of dH1K27me2 is H3K9 methylation independent, as it is equally detected in flies carrying a H3K9R mutation, and is not affected by depletion of Su(var)3–9, HP1a or Su(var)4–20. Altogether these results suggest that dH1K27me2 contributes to heterochromatin organization independently of H3K9 methylation.  相似文献   

17.

Background  

In eukaryotes, histone H3 lysine 9 (H3K9) methylation is a common mechanism involved in gene silencing and the establishment of heterochromatin. The loci of the major heterochromatic H3K9 methyltransferase Su(var)3-9 and the functionally unrelated γ subunit of the translation initiation factor eIF2 are fused in Drosophila melanogaster. Here we examined the phylogenetic distribution of this unusual gene fusion and the molecular evolution of the H3K9 HMTase Su(var)3-9.  相似文献   

18.
The INDETERMINATE protein, ID1, plays a key role in regulating the transition to flowering in maize. ID1 is the founding member of a plant-specific zinc finger protein family that is defined by a highly conserved amino sequence called the ID domain. The ID domain includes a cluster of three different types of zinc fingers separated from a fourth C2H2 finger by a long spacer; ID1 is distinct from other ID domain proteins by having a much longer spacer. In vitro DNA selection and amplification binding assays and DNA binding experiments showed that ID1 binds selectively to an 11 bp consensus motif via the ID domain. Unexpectedly, site-directed mutagenesis of the ID1 protein showed that zinc fingers located at each end of the ID domain are not required for binding to the consensus motif despite the fact that one of these zinc fingers is a canonical C2H2 DNA binding domain. In addition, an ID1 in vitro deletion mutant that lacks the extra spacer between zinc fingers binds the same 11 bp motif as normal ID1, suggesting that all ID domain-containing proteins recognize the same DNA target sequence. Our results demonstrate that maize ID1 and ID domain proteins have novel zinc finger configurations with unique DNA binding properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号