首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An on-chip electrochemical flow immunoassay system for the detection of hemoglobin A1c (HbA1c) was developed using anti-human hemoglobin (Hb) IgG labeled with ferrocene monocarboxylic acid (Fc-COOH) and boronate-affinity chromatography. An on-chip column packed with boronate-activated agarose beads was used for the separation of HbA1c from both non-glycated Hb and free antibody. Anti-human Hb IgG conjugated to Fc-COOH (Fc-IgG) was used for the electrochemical detection of HbA1c. The assay procedure included immunoreactions with Fc-IgG and HbA1c, separation of immunocomplexes by boronate affinity, and electrochemical detection of Fc-IgG-HbA1c immunocomplexes. The immunoreaction mixtures were injected onto a boronate-affinity column. HbA1c-antibody complexes were then trapped onto the column by the affinity of HbA1c to boronic acid. Subsequently, elution buffer containing sorbitol was applied to elute HbA1c-antibody complexes and a current was detected by applying 600 mV versus Ag/AgCl. The elution signal was an estimation of the HbA1c amount. A linear correlation between the increase of current and HbA1c concentration was obtained up to an HbA1c concentration of 500 microg/ml. The HbA1c flow immunoassay was successfully achieved using hemolysates. This electrochemical flow immunoassay system enabled us to construct a novel point-of-care testing device for the monitoring of glycated proteins including HbA1c.  相似文献   

2.
The goal of this work is to explore the amplification effect of aptamer–gold nanoparticles (Au NPs) conjugates for ultrasensitive detection of large biomolecules by surface plasmon resonance (SPR). A novel sandwich immunoassay is designed to demonstrate the amplification effect of aptamer–Au NPs conjugates by using human immunoglobulin E (IgE) as model analyte. Human IgE, captured by immobilized goat anti-human IgE on SPR gold film, is sensitively detected by SPR spectroscopy with a lowest detection limit of 1 ng/ml after anti-human IgE aptamer–Au NPs conjugates is used as amplification reagent. Meanwhile, the non-specific adsorption of aptamer–Au NPs conjugates on goat anti-human IgE is confirmed by SPR spectroscopy and then it is minimized by treating aptamer–Au NPs conjugates with 6-mercaptohexan-1-ol (MCH). These results confirm that aptamer–Au NPs conjugates is a powerful sandwich element and an excellent amplification reagent for SPR-based sandwich immunoassay.  相似文献   

3.
A new approach toward the development of advanced immunosensors based on chemically functionalized core-shell-shell magnetic nanocomposite particles, and the preparation, characteristics, and measurement of relevant properties of the immunosensor useful for the detection of alpha-1-fetoprotein (AFP) in clinical immunoassays. The core-shell NiFe2O4/3-aminopropyltriethoxysilance (APTES) (NiFe2O4@APTES) was initially prepared by covalent conjugation, then gold nanoparticles were adsorbed onto the surface of NiFe2O4@APTES, and then anti-AFP molecules were conjugated on the gold nanoparticles. The core-shell-shell nanocomposite particles not only had the properties of magnetic nanoparticles, but also provided a good biocompatibility for the immobilization of biomolecules. The core-shell-shell nanostructure present good magnetic properties to facilitate and modulate the way it was integrated into a carbon paste. The analytical performance of the immunosensor was investigated by using an electrochemical method. Under optimal conditions, the resulting composite presents good electrochemical response for the detection of AFP, and exhibits wide linear range from 0.9 to 110 ng/mL AFP with a detection limit of 0.5 ng/mL. Moreover, the proposed immunosensors were used to analyze AFP in human serum specimens. Analytical results, obtained for the clinical serum specimen by the developed immunosensor, were in accordance with those assayed by the standard ELISA. Importantly, the proposed immunoassay system could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

4.
A chemiluminescence (CL) immunoassay was developed to determine human growth hormone (hGH) based on copper‐enhanced gold nanoparticles. In this method, gold nanoparticles were deposited on polystyrene wells for adsorption of human growth antibodies as well as catalyst for reducing of copper ions from the copper enhancer solution. The reduction of copper ions was prevented where the gold nanoparticles were covered by the antibody–antigen immunocomplex. The deposited copper on Au nanoparticles was then dissolved in HNO3 solution and quantified using the CL method. The CL intensity response was logarithmically dependent on the hGH concentrations over the range 0.2–50 ng/mL, with a detection limit (3σ) of 0.036 ng/mL. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A novel tracer, glucose oxidase (GOD)-functionalized hollow gold nanospheres encapsulating glucose oxidase (Au(shell)@GOD), was designed to label the ferrocenemonocarboxylic-grafted secondary antibodies (Fc@Ab(2)) for highly sensitive detection of tumor marker using carboxyl group functionalized multiwall carbon nanotubes as platform. Initially, Au(shell)@GOD was synthesized specially by reverse micelle approach, and then the labeling of antibody and the preparation of GOD-functionalized Au(shell)@GOD were performed by one-pot assembly of Fc@Ab(2) and GOD on the surface of Au(shell)@GOD. The ferrocene used to label antibodies acted as a mediator of electron transfer between GOD and electrode surface. The high-content glucose oxidase in the tracer (on the surface and in the cavity) could significantly amplify the amperometric signal for sandwich-type immunoassay. Using carcinoembryonic antigen (CEA) as model analyte, the designed tracer showed linear range from 0.02 to 5.0 ng mL(-1) with the detection limit down to 6.7 pg mL(-1). The assay results of serum samples with the proposed method were in an acceptable agreement with the reference values. The new protocol showed acceptable stability and reproducibility, high sensitivity, and good precision, which could provide a promising potential for clinical screening and diagnosis of tumor disease.  相似文献   

6.
Suspension arrays present a promising tool for multiplexed assays in large-scale screening applications. A simple and robust platform for quantitative multiprotein immunoanalysis has been developed with the use of magnetic Co:Nd:Fe(2)O(3)/luminescent Eu:Gd(2)O(3) core/shell nanoparticles (MLNPs) as a carrier. The magnetic properties of the MLNPs allow their manipulation by an external magnetic field in the separation and washing steps in the immunoassay. Their optical properties enable the internal calibration of the detection system. The multiplexed sandwich immunoassay involves dual binding events on the surface of the MLNPs functionalized with the capture antibodies. Secondary antibodies labeled with conventional organic dyes (Alexa Fluor) are used as reporters. The amount of the bound secondary antibody is directly proportional to the concentration of the analyte in the sample. In our approach, the fluorescence intensity of the reporter dye is related to the luminescence signal of the MLNPs. In this way, the intrinsic luminescence of the MLNPs serves as an internal standard in the quantitative immunoassay. The concept is demonstrated for a simultaneous immunoassay for three model proteins (human, rabbit, and mouse IgGs). The method uses a standard bench plate reader. It can be applied to disease diagnostics and to the detection of biological threats.  相似文献   

7.
A novel label-free electrochemical immunoassay based on core/shell Ag@Au nanoparticles monolayer as sensing interface has been developed for probing IgG. Several coupling techniques, such as Ag nanoparticles, Au nanoparticles, and the core/shell Ag@Au nanoparticles with L-Cysteine (Cys) cross-linking, were investigated for the determination of IgG and a very good result was obtained with the core/shell Ag@Au nanoparticles coupling. With the core/shell Ag@Au nanoparticles coupling method, the effects of the incubation time and pH on amperometric responses of the immunoassay were studied. The strong attachment of the cross-linked complex to the core/shell Ag@Au nanoparticles surface resulted in an excellent storage lifetime of 33 days. A dynamic concentration range of 2.3 to 960 ng/mL with a detection limit of 10 ng/mL was observed. Analytical results of 30 human serum samples obtained using the developing technique are in satisfactory agreement with those given by ELISA. In addition, it presents some superior advantages over the traditional sandwich format in that the analyzing performances are direct, rapid, and simple without multiple separation and labeling steps.  相似文献   

8.
Su H  Yuan R  Chai Y  Mao L  Zhuo Y 《Biosensors & bioelectronics》2011,26(11):4601-4604
A multiple amplification immunoassay was proposed to detect alpha-fetoprotein (AFP), which was based on ferrocenemonocarboxylic-HRP conjugated on Pt nanoparticles as labels for rolling circle amplification (RCA). Firstly, the capture antibody (anti-AFP) was immobilized on glass carbon electrode (GCE) deposited nano-sized gold particles. After a typical immuno-sandwich protocol, primary DNA was immobilized by labeling secondary antibody, which acted as a precursor to initiate RCA. The products of RCA provide large amount of sites to link detection DNAs, which were labeled by signal probes (ferrocenemonocarboxylic) and horseradish peroxidase (HRP). Moreover, the enzymatic amplification signals could be produced by the catalysis of HRP and Pt nanoparticles with the addition of H?O?. These lead to multiple amplification signals monitoring by electrochemical instrument and further resulted in high sensitivity of the immunoassay with the detection limit of 1.7 pg/mL.  相似文献   

9.
A microfluidic electrochemical immunoassay system for multiplexed detection of protein cancer biomarkers was fabricated using a molded polydimethylsiloxane channel and routine machined parts interfaced with a pump and sample injector. Using off-line capture of analytes by heavily-enzyme-labeled 1 μm superparamagnetic particle (MP)-antibody bioconjugates and capture antibodies attached to an 8-electrode measuring chip, simultaneous detection of cancer biomarker proteins prostate specific antigen (PSA) and interleukin-6 (IL-6) in serum was achieved at sub-pg mL?1 levels. MPs were conjugated with ~90,000 antibodies and ~200,000 horseradish peroxidase (HRP) labels to provide efficient off-line capture and high sensitivity. Measuring electrodes feature a layer of 5 nm glutathione-decorated gold nanoparticles to attach antibodies that capture MP-analyte bioconjugates. Detection limits of 0.23 pg mL?1 for PSA and 0.30 pg mL?1 for IL-6 were obtained in diluted serum mixtures. PSA and IL-6 biomarkers were measured in serum of prostate cancer patients in total assay time 1.15 h and sensor array results gave excellent correlation with standard enzyme-linked immunosorbent assays (ELISA). These microfluidic immunosensors employing nanostructured surfaces and off-line analyte capture with heavily labeled paramagnetic particles hold great promise for accurate, sensitive multiplexed detection of diagnostic cancer biomarkers.  相似文献   

10.
A simple and sensitive label-free electrochemical immunoassay electrode for detection of carcinoembryonic antigen (CEA) has been developed. CEA antibody (CEAAb) was covalently attached on glutathione (GSH) monolayer-modified gold nanoparticle (AuNP) and the resulting CEAAb-AuNP bioconjugates were immobilized on Au electrode by electro-copolymerization with o-aminophenol (OAP). Electrochemical impedance spectroscopy and cyclic voltammetry studies demonstrate that the formation of CEA antibody-antigen complexes increases the electron transfer resistance of [Fe(CN)(6)](3-/4-) redox pair at the poly-OAP/CEAAb-AuNP/Au electrode. The use of CEA antibody-AuNP bioconjugates and poly-OAP film could enhance the sensitivity and anti-nonspecific binding of the resulting immunoassay electrode. The preliminary application of poly-OAP/CEAAb-AuNP/Au electrode for detection of CEA was also evaluated.  相似文献   

11.
In this study, a novel electroconductive interface was prepared based on Fe3O4 magnetic nanoparticle and cysteamine functionalized gold nanoparticle. The engineered interface was used as signal amplification substrate in the electrochemical analysis of antibody‐antigen binding. For this purpose, biotinilated‐anti‐prostate‐specific antigen (PSA) antibody was bioconjugated with iron oxide magnetic nanoparticles (Fe3O4) and drop‐casted on the surface of glassy carbon electrode (GCE). Also, secondary antibody (HRP‐Ab2) encapsulated on gold nanoparticles caped by cysteamine was immobilized on the surface of GCE modified electrode. A transmission electron microscopy images shows that a sandwich immunoreaction was done and binding of Ab1 and Ab2 performed successfully. Various parameters of immunoassay, including the loading of magnetic nanoparticles, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.001 μg. L?1 of PSA was obtained under optimum experimental conditions. It is found that such magneto‐bioassay could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for early stage diagnosis of cancer in near future.  相似文献   

12.
A novel class of molecular tags, cadmium ion-doped magnetic poly(styrene-acrylic acid) nanospheres (Cd-MPSA), was first synthesized and functionalized with polyclonal rabbit anti-human luteinizing hormone antibodies (PAb(2)) for highly efficient electrochemical immunoassay of luteinizing hormone (LH). Transmission electron microscope (TEM) and Fourier transform infrared spectroscope (FTIR) were employed to characterize the prepared Cd-MPSA. By using Cd-MPSA-labeled PAb(2) as molecular tags, a novel sandwich-type immunoassay protocol was built for determination of LH on monoclonal mouse anti-human luteinizing hormone antibody (MAb(1))-functionalized gold electrode. The assay was carried out in pH 5.3 HAc-NaAc buffer solution by square wave voltammetry (SWV). The signal was obtained by the reduction of the doped cadmium ions in the Cd-MPSA. Under optimal conditions, the currents increased with the increasing LH level in the sample, and exhibited a linear range from 0.25 to 240 mIU mL(-1) with a detection limit of 0.08 mIU mL(-1) LH at 3s(B). The precision, reproducibility, and specificity were acceptable. No obvious difference was encountered in the analysis of spiking LH samples into newborn calf serum with the referenced values.  相似文献   

13.
A sulfite oxidase (SO(X)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto carboxylated gold coated magnetic nanoparticles (Fe(3)O(4)@GNPs) electrodeposited onto the surface of a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) chemistry. An amperometric sulfite biosensor was fabricated using SO(X)/Fe(3)O(4)@GNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode. The working electrode was characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS) before and after immobilization of SO(X). The biosensor showed optimum response within 2s when operated at 0.2V (vs. Ag/AgCl) in 0.1 M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and detection limit were 0.50-1000 μM and 0.15 μM (S/N=3) respectively. Biosensor was evaluated with 96.46% recovery of added sulfite in red wine and 1.7% and 3.3% within and between batch coefficients of variation respectively. Biosensor measured sulfite level in red and white wines. There was good correlation (r=0.99) between red wines sulfite value by standard DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) method and the present method. Enzyme electrode was used 300 times over a period of 4 months, when stored at 4 °C. Biosensor has advantages over earlier biosensors that it has excellent electrocatalysis towards sulfite, lower detection limit, higher storage stability and no interference by ascorbate, cysteine, fructose and ethanol.  相似文献   

14.
A new strategy for immobilization of horseradish peroxidase (HRP) has been presented by self-assembling gold nanoparticles on chitosan hydrogel modified Au electrode. From a mildly acidic chitosan solution, a chitosan film is electrochemically deposited on Au electrode surface via a negative voltage bias. This process is accompanied by the hydrogen evolution reaction, and the released hydrogen gas made the deposited chitosan film with porous structure, which facilitates the assembly of gold nanoparticles and HRP. The resulting substrates were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The immobilized HRP displayed an excellent catalytic property to the reduction of H2O2 in the presence of methylene blue mediator. The resulting biosensor (HRP-modified electrode) showed a wide dynamic range of 8.0 microM-15 mM H2O2, and the linear ranges were 8.0 microM-0.12 mM and 0.50-12 mM, with a detection limit of 2.4 microM estimated at a signal-to-noise ratio of 3. Moreover, the biosensor remained about 85% of its original sensitivity after four weeks' storage.  相似文献   

15.
Du D  Tao Y  Zhang W  Liu D  Li H 《Biosensors & bioelectronics》2011,26(10):4231-4235
Acetylcholinesterase (AChE) activity is a well established biomarker for biomonitoring of exposures to organophosphates (OPs) pesticides and chemical nerve agents. In this work, we described a novel electrochemical oxidative desorption-process of thiocholine, the product of enzymatic reaction, for rapid and highly sensitive determination of AChE activity in human serum. This principle is based on self-assembling of produced thiocholine onto core-shell Fe(3)O(4)/Au nanoparticles (Fe(3)O(4)/AuNPs) magnetic nanocomposites and its oxidation at electrode surface. Fe(3)O(4) magnetic core is not only used for magnetic separation from sample solutions, but also carrying more AuNPs due to its large surface-to-volume ratio. The core-shell Fe(3)O(4)/AuNPs nanocomposites were characterized by UV-Vis spectroscopy, field-emission scanning electron microscopy (FE-SEM) and electrochemical measurements. A linear relationship was obtained between the AChE activity and its concentration from 0.05 to 5.0 mU mL(-1) with a detection limit of 0.02 mU mL(-1). The method showed good results for characterization of AChE spiked human serum and detection of OP exposures from 0.05 to 20 nM, with detection limit of 0.02 nM. This new oxidative desorption assay thus provides a sensitive and quantitative tool for biomonitoring of the exposure to OP pesticides and nerve agents.  相似文献   

16.
In this paper, a novel electrochemical immunosensor for the determination of casein based on gold nanoparticles and poly(L-Arginine)/multi-walled carbon nanotubes (P-L-Arg/MWCNTs) composite film was proposed. The P-L-Arg/MWCNTs composite film was used to modify glassy carbon electrode (GCE) to fabricate P-L-Arg/MWCNTs/GCE through electropolymerization of L-Arginine on MWCNTs/GCE. Gold nanoparticles were adsorbed on the modified electrode to immobilize the casein antibody and to construct the immunosensor. The stepwise assembly process of the immunosensor was characterized by cyclic voltammetry and differential pulse voltammetry. Results demonstrated that the peak currents of [Fe(CN)(6)](3-/4-) redox pair decreased due to the formation of antibody-antigen complex on the modified electrode. The optimization of the adsorption time of gold nanoparticles, the pH of supporting electrolyte and the incubation time were investigated in details. Under optimal conditions, the peak currents obtained by DPV decreased linearly with the increasing casein concentrations in the range from 1 × 10(-7) to 1 × 10(-5) g mL(-1) with a linear coefficiency of 0.993. This electrochemical immunoassay has a low detection limit of 5 × 10(-8) g mL(-1) and was successfully applied to the determination of casein in cheese samples.  相似文献   

17.
A new simple immunoassay method for carcinoembryonic antigen (CEA) detection using a disposable immunosensor coupled with a flow injection system was developed. The immunosensor was prepared by coating CEA/colloid Au/chitosan membrane at a screen-printed carbon electrode (SPCE). Using a competitive immunoassay format, the immunosensor inserted in the flow system with an injection of sample and horseradish peroxidase (HRP)-labeled CEA antibody was used to trap the labeled antibody at room temperature for 35 min. The current response obtained from the labeled HRP to thionine-H(2)O(2) system decreased proportionally to the CEA concentration in the range of 0.50-25 ng/ml with a correlation coefficient of 0.9981 and a detection limit of 0.22 ng/ml (S/N=3). The immunoassay system could automatically control the incubation, washing and current measurement steps with good stability and acceptable accuracy. Thus, the proposed method proved its potential use in clinical immunoassay of CEA.  相似文献   

18.
Fe(3)O(4) magnetic nanoparticles were in situ loaded on the surface of multiwalled carbon nanotubes (MWCNTs) by a simple coprecipitation procedure. The resulting Fe(3)O(4)/MWCNTs nanocomposite brings new capabilities for electrochemical sensing by combining the advantages of Fe(3)O(4) magnetic nanoparticles and MWCNTs. It was found that Fe(3)O(4) has redox properties similar to those of frequently used mediators used for electron transfer between NADH and electrode. The cyclic voltammetric results indicated the ability of Fe(3)O(4)/MWCNTs modified GC electrode to catalyze the oxidation of NADH at a very low potential (0.0 mV vs. Ag/AgCl) and subsequently, a substantial decrease in the overpotential by about 650 mV compared with the bare GC electrode. The catalytic oxidation current allows the stable and selective amperometric detection of NADH at an applied potential of 0.0 mV (Ag/AgCl) with a detection limit of 0.3 μM and linear response up to 300 μM. This modified electrode can be used as an efficient transducer in the design of biosensors based on coupled dehydrogenase enzymes. Lactate dehydrogenase (LDH) and NAD(+) were subsequently immobilized onto the Fe(3)O(4)/MWCNTs nanocomposite film by covalent bond formation between the amine groups of enzyme or NAD(+) and the carboxylic acid groups of the Fe(3)O(4)/MWCNT film. Differential pulse voltammetric detection of lactate on Fe(3)O(4)/MWCNT/LDH/NAD(+) modified GC electrode gives linear responses over the concentration range of 50-500 μM with the detection limit of 5 μM and sensitivity of 7.67 μA mM(-1). Furthermore, the applicability of the sensor for the analysis of lactate concentration in human serum samples has been successfully demonstrated.  相似文献   

19.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   

20.
Zhu Y  Xu L  Ma W  Chen W  Yan W  Kuang H  Wang L  Xu C 《Biosensors & bioelectronics》2011,26(11):4393-4398
In this paper, we demonstrate the application of versatile G-quadruplex-hemin DNAzymes in an immunoassay for detecting Microcystin-LR (MC-LR). Taking advantage of the high peroxidase activity of G-quadruplex-hemin complexes and the enhancement effect of gold nanoparticles (AuNPs), the method showed simple, high sensitive and selectivity detection of target toxin residues in water samples. The coated antigen, MC-LR-ovalbumin (OVA) coated on a plate, competed for MC-LR antibody with added target analyte to form antibody-antigen immune complexes. Subsequently, the immune complex reacted with G-quadruplex-labeled secondary antibodies for colorimetric detection of MC-LR. This assay specifically determined MC-LR in the linear range of 0.1-10 ng/ml, with a limit of detection (LOD) of 0.05 ng/mL for MC-LR. The results indicated that the novel immunoassay was an alternative to traditional plate-based immunoassay for MC-LR residue screening due to this method met the standard of World Health Organization (WHO) requirements for MC-LR content in drinking water (1 ng/mL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号