首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The most significant factor contributing to the presence of host cell protein (HCP) impurities in Protein A chromatography eluates is their association with the product monoclonal antibodies (mAbs) has been reported previously, and it has been suggested that more efficacious column washes may be developed by targeting the disruption of the mAbs-HCP interaction. However, characterization of this interaction is not straight forward as it is likely to involve multiple proteins and/or types of interaction. This work is an attempt to begin to understand the contribution of HCP subpopulations and/or mAb interaction propensity to the variability in HCP levels in the Protein A eluate. We performed a flowthrough (FT) recycling study with product respiking using two antibody molecules of apparently different HCP interaction propensities. In each case, the ELISA assay showed depletion of select subpopulations of HCP in Protein A eluates in subsequent column runs, while the feedstock HCP in the FTs remained unchanged from its native harvested cell culture fluid (HCCF) levels. In a separate study, the final FT from each molecule's recycling study was cross-spiked with various mAbs. In this case, Protein A eluate levels remained low for all but two molecules which were known as having high apparent HCP interaction propensity. The results of these studies suggest that mAbs may preferentially bind to select subsets of HCPs, and the degree of interaction and/or identity of the associated HCPs may vary depending on the mAb.  相似文献   

2.
Rhodobacter capsulatus E1F1 grows phototrophically with nitrate as nitrogen source. Using primers designed for conserved motifs in bacterial assimilatory nitrate reductases, a 450-bp DNA was amplified by PCR and used for the screening of a genomic library. A cosmid carrying an insert with four SalI fragments of 2.8, 4.1, 4.5, and 5.8 kb was isolated, and DNA sequencing revealed that it contains a nitrate assimilation (nas) gene region, including the hcp gene coding for a hybrid cluster protein (HCP). Expression of hcp is probably regulated by a nitrite-sensitive repressor encoded by the adjacent nsrR gene. A His(6)-HCP was overproduced in Escherichia coli and purified. HCP contained about 6 iron and 4 labile sulfide atoms per molecule, in agreement with the presence of both [2Fe-2S] and [4Fe-2S-2O] clusters, and showed hydroxylamine reductase activity, forming ammonia in vitro with methyl viologen as reductant. The apparent K(m) values for NH(2)OH and methyl viologen were 1 mM and 7 microM, respectively, at the pH and temperature optima (9.3 and 40 degrees C). The activity was oxygen-sensitive and was inhibited by sulfide and iron reagents. R. capsulatus E1F1 grew phototrophically, but not heterotrophically, with 1 mM NH(2)OH as nitrogen source, and up to 10 mM NH(2)OH was taken up by anaerobic resting cells. Ammonium was transiently accumulated in the media, and its assimilation was prevented by L-methionine-D,L-sulfoximine, a glutamine synthetase inhibitor. In addition, hydroxylamine- or nitrite-grown cells showed the higher hydroxylamine reductase activities. However, R. capsulatus B10S, a strain lacking the whole hcp-nas region, did not grow with 1 mM NH(2)OH. Also, E. coli cells overproducing HCP tolerate hydroxyl-amine better during anaerobic growth. These results suggest that HCP is involved in assimilation of NH(2)OH, a toxic product that could be formed during nitrate assimilation, probably in the nitrite reduction step.  相似文献   

3.
Hematopoietic cell phosphatase (HCP) is a tyrosine phosphatase with two Src homology 2 (SH2) domains that is predominantly expressed in hematopoietic cells, including cells whose growth is regulated by interleukin-3 (IL-3). The potential effects of HCP on IL-3-induced protein tyrosine phosphorylation and growth regulation were examined to assess the role of HCP in hematopoiesis. Our studies demonstrate that, following ligand binding, HCP specifically associates with the beta chain of the IL-3 receptor through the amino-terminal SH2 domain of HCP, both in vivo and in vitro, and can dephosphorylate the receptor chain in vitro. The effects of increasing or decreasing HCP levels in IL-3-dependent cells were assessed with dexamethasone-inducible constructs containing an HCP cDNA in sense and antisense orientations. Increased HCP levels were found to reduce the levels of IL-3-induced tyrosine phosphorylation of the receptor and to dramatically suppress cell growth. Conversely, decreasing the levels of HCP increased IL-3-induced tyrosine phosphorylation of the receptor and marginally increased growth rate. These results support a role for HCP in the regulation of hematopoietic cell growth and begin to provide a mechanistic explanation for the dramatic effects that the genetic loss of HCP, which occurs in motheaten (me) and viable motheaten (mev) mice, has on hematopoiesis.  相似文献   

4.
Protein tyrosine phosphorylation and dephosphorylation have been implicated in the growth and functional responses of hematopoietic cells. Recent studies have identified a novel protein tyrosine phosphatase, termed hematopoietic cell phosphatase (HCP) or PTP1C, that is predominantly expressed in hematopoietic cells. HCP encodes a cytoplasmic phosphatase that contains two src homology 2 (SH2) domains. Since SH2 domains have been shown to target the association of signal-transducing molecules with activated growth factor receptors containing intrinsic protein kinase activity, we assessed the association of HCP with two hematopoietic growth factor receptors, c-Kit and c-Fms. The results demonstrate that HCP transiently associates with ligand-activated c-Kit but not c-Fms and that this association occurs through the SH2 domains. In both colony-stimulating factor 1- and stem cell factor-stimulated cells, there is a marginal increase in tyrosine phosphorylation of HCP. Lastly, HCP can dephosphorylate autophosphorylated c-Kit and c-Fms in in vitro reactions. The potential role of HCP in stem cell factor signal transduction is discussed.  相似文献   

5.
The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.  相似文献   

6.
Paracoccus pantotrophus cytochrome cd(1) is a physiological nitrite reductase and an in vitro hydroxylamine reductase. The oxidised "as isolated" form of the enzyme has bis-histidinyl coordinated c-heme and upon reduction its coordination changes to histidine/methionine. Following treatment of reduced enzyme with hydroxylamine, a novel, oxidised, conformer of the enzyme is obtained. We have devised protocols for freeze-quench near-ir-MCD spectroscopy that have allowed us to establish unequivocally the c-heme coordination of this species as His/Met. Thus it is shown that the catalytically competent, hydroxylamine reoxidised, form of P. pantotrophus cytochrome cd(1) has different axial ligands to the c-heme than "as isolated" enzyme.  相似文献   

7.
As significant improvements in volumetric antibody productivity have been achieved by advances in upstream processing over the last decade, and harvest material has become progressively more difficult to recover with these intensified upstream operations, the segregation of upstream and downstream processing has remained largely unchanged. By integrating upstream and downstream process development, product purification issues are given consideration during the optimization of upstream operating conditions, which mitigates the need for extensive and expensive clearance strategies downstream. To investigate the impact of cell culture duration on critical quality attributes, CHO-expressed IgG1 was cultivated in two 2 L bioreactors with samples taken on days 8, 10, 13, 15, and 17. The material was centrifuged, filtered and protein A purified on a 1 ml HiTrap column. Host cell protein (HCP) identification by mass spectrometry (MS) was applied to this system to provide insights into cellular behavior and HCP carryover during protein A purification. It was shown that as cultivation progressed from day 8 to 17 and antibody titer increased, product quality declined due to an increase in post-protein A HCPs (from 72 to 475 peptides detected by MS) and a decrease in product monomer percentage (from 98% to 95.5%). Additionally, the MS data revealed an increase in the abundance of several classes of post-protein A HCPs (e.g., stress response proteins and indicators of cell age), particularly on days 15 and 17 of culture, which were associated with significant increases in total overall HCP levels. This provides new insight into the specific types of HCPs that are retained during mAb purification and may be used to aid process development strategies.  相似文献   

8.
Proton-coupled folate transporter/heme carrier protein 1 (PCFT/HCP1) has recently been identified as a transporter that mediates the translocation of folates across the cellular membrane by a proton-coupled mechanism and suggested to be the possible molecular entity of the carrier-mediated intestinal folate transport system. To further clarify its role in intestinal folate transport, we examined the functional characteristics of rat PCFT/HCP1 (rPCFT/HCP1) expressed in Xenopus laevis oocytes and compared with those of the carrier-mediated folate transport system in the rat small intestine evaluated by using the everted tissue sacs. rPCFT/HCP1 was demonstrated to transport folate and methotrexate more efficiently at lower acidic pH and, as evaluated at pH 5.5, with smaller Michaelis constant (K(m)) for the former (2.4 microM) than for the latter (5.7 microM), indicating its characteristic as a proton-coupled folate transporter that favors folate than methotrexate as substrate. rPCFT/HCP1-mediated folate transport was found to be inhibited by several but limited anionic compounds, such as sulfobromophthalein and sulfasalazine. All these characteristics of rPCFT/HCP1 were in agreement with those of carrier-mediated intestinal folate transport system, of which the K(m) values were 1.2 and 5.8 microM for folate and methotrexate, respectively, in the rat small intestine. Furthermore, the distribution profile of the folate transport system activity along the intestinal tract was in agreement with that of rPCFT/HCP1 mRNA. This study is the first to clone rPCFT/HCP1, and we successfully provided several lines of evidence that indicate its role as the molecular entity of the intestinal folate transport system.  相似文献   

9.
Photosensitive Chenopodium chlorophyll protein was purifiedby warming the complex in a boiling water bath, followed bypassing it through a Sephadex column. The shape and positionof the absorption band in the absorption spectrum of purifiedchlorophyll protein (HCP668) were the same as those of non-treatedchlorophyll protein (CP668), except for a change in the proteinband in the UV region. The chlorophyll protein retained a quarterof its original photoconvertibility after heat treatment for25 min at 100°C. Results suggested that the chlorophyll-aminoacid residue binding is very stable against heat, and that chlorophyllis protected from decomposition through the rigid binding. The photoconvertibility of HCP668, as well as CP668, dependedstrongly upon pH, with a pronounced decrease below pH 4 andabove pH 6. Optimal convertibility was at pH 5. Above pH 12,convertibility vanished completely. However, pH-inhibited convertibilityof HCP668 was recovered to its original level by returning thepH to neutral. Illuminalion of CP668 in D2O with red light caused a markedincrease in light scattering. This reveals the occurrence ofa conformational change of apoprotein, leading to aggregation. HCP668 was degraded by mechanical treatment to give a smallersized photosensitive chlorophyll protein without loss of photoconvertibility.This small chlorophyll protein did not precipitate in a saturated(NH4)2SO4 solution. The spectral properties of this complexwere identical to those of HCP668 and CP668. (Received March 21, 1972; )  相似文献   

10.
A novel human TF-1 cell apoptosis-related protein, TFAR19, cloned from a human leukemia cell line, TF-1, was first overexpressed in Escherichia coli with the sequence Met-Gly-His(6)-Gly-Thr-Asn-Gly, a hexahistidine sequence followed by a hydroxylamine cleavage site attached to its amino terminus. The resulting protein was soluble and single-step purified to homogeneity by metal chelating affinity chromatography. After cleavage of the purified His(6)-tagged TFAR19 sample with hydroxylamine, highly purified untagged TFAR19 protein was then obtained through an FPLC Resource Q column. The structural characteristics and function of the His(6)-tagged and untagged TFAR19 proteins were studied using circular dichroism, intrinsic fluorescence, and ANS-binding fluorescence spectra and apoptosis activity assay. The results show that alpha-helix is the main secondary structure of the proteins and the two forms of TFAR19 protein fold properly, which correspond well to their apoptosis activity expression. The results also indicate that the extra sequence including the His(6)-tag fused to the N-terminus of TFAR19 protein has a minimal effect on its structure and function, suggesting that the His(6)-tagged TFAR19 protein could be further used as an immobilized target for finding potential proteins which interact with TFAR19 from a cDNA library using in vitro ribosome display technique.  相似文献   

11.
The characterization of host cell protein (HCP) content during the production of therapeutic recombinant proteins is an important aspect in the drug development process. Despite this, key components of the HCP profile and how this changes with processing has not been fully investigated. Here we have investigated the supernatant HCP profile at different times throughout culture of a null and model GS-CHO monoclonal antibody producing mammalian cell line grown in fed-batch mode. Using 2D-PAGE and LC-MS/MS we identify a number of intracellular proteins (e.g., protein disulfide isomerise; elongation factor 2; calreticulin) that show a significant change in abundance relative to the general increase in HCP concentration observed with progression of culture. Those HCPs that showed a significant change in abundance across the culture above the general increase were dependent on the cell line examined. Further, our data suggests that the majority of HCPs in the supernatant of the cell lines investigated here arise through lysis or breakage of cells, associated with loss in viability, and are not present due to the secretion of protein material from within the cell. SELDI-TOF and principal components analysis were also investigated to enable rapid monitoring of changes in the HCP profile. SELDI-TOF analysis showed the same trends in the HCP profile as observed by 2D-PAGE analysis and highlighted biomarkers that could be used for process monitoring. These data further our understanding of the relationship between the HCP profile and cell viability and may ultimately enable a more directed development of purification strategies and the development of cell lines based upon their HCP profile.  相似文献   

12.
A water-soluble polysaccharide was isolated and purified from the culture filtrate of the photosynthetic green microalgae Haematococcus lacustris by 75% ethanol precipitation and Sepharose CL-6B column chromatography. The molecular mass of the purified polysaccharide (named HCP) was estimated to be approximately 135 kDa by size-exclusion HPLC and its monosaccharide composition was galactose, glucose and mannose at a relative molar ratio of 2.0, 1.0, and 4.1, respectively, suggesting that HCP is a galactomannan. Fourier-transform infrared and elemental analysis revealed that the purified HCP contains sulfate esters by 1.08% (in mass) and no detectable level of protein. The HCP significantly stimulated murine macrophage RAW264.7 cells to secrete the pro-inflammatory cytokine, TNF-α, in a dose-dependent manner and also enhanced the expression of COX-2 and iNOS genes at a concentration of lower than 10 μg/mL HCP. These results indicated that the sulfated HCP of H. lacustris has potent early innate immune stimulating activities.  相似文献   

13.
Pyrococcus furiosus hybrid cluster protein (HCP) was expressed in Escherichia coli, purified, and characterized. This is the first archaeal and thermostable HCP to be isolated. Compared with the protein sequences of previously characterized HCPs from mesophiles, the protein sequence of P. furiosus HCP exhibits a deletion of approximately 13 kDa as a single amino acid stretch just after the N-terminal cysteine motif, characteristic for class-III HCPs from (hyper)thermophilic archaea and bacteria. The protein was expressed as a thermostable, soluble homodimeric protein. Hydroxylamine reductase activity of P. furiosus HCP showed a K m value of 0.40 mM and a k cat value of 3.8 s−1 at 70 °C and pH 9.0. Electron paramagnetic resonance spectroscopy showed evidence for the presence of a spin-admixed, S = 3/2 [4Fe–4S]+ cubane cluster and of the hybrid cluster. The cubane cluster of P. furiosus HCP is presumably coordinated by a CXXC–X7–C–X5–C motif close to the N-terminus, which is similar to the CXXC–X8–C–X5–C motif of the Desulfovibrio desulfuricans and Desulfovibrio vulgaris HCPs. Amino acid sequence alignment and homology modeling of P. furiosus HCP reveal that the deletion results in a loss of one of the two three-helix bundles of domain 1. Clearly the loss of one of the three-helix bundles of domain 1 does not diminish the hydroxylamine reduction activity and the incorporation of the iron–sulfur clusters.  相似文献   

14.
Nitrate reduction in vivo by spinach leaf discs was shown to be inhibited by hydroxylamine when this was included in the nitrate reductase assay solutions or introduced to the tissue during a preincubation period. The sensitivity of nitrate reduction to hydroxylamine was not sufficient to suggest a natural process, considering the small endogenous concentrations of hydroxylamine in the leaves. Inhibition of nitrate reduction in vivo could be approximately related to rates of in vitro inhibition of nitrate reductase by this compound. There was no need to suppose conversion of hydroxylamine to cyanide to inhibit nitrate reduction. Some of the in vivo and in vitro characteristics of hydroxylamine inhibition of nitrate reductase are described. Hydroxylamine was metabolised by discs at rates comparable to nitrate reduction. Rates of metabolism of hydroxylamine, and its accumulation in the tissues from an external solution were both enhanced by light but little affected by anaerobiosis.Abbreviations NR nitrate reductase  相似文献   

15.
Haem released from digestion and breakdown of meat products provides an important source of dietary iron, which is readily absorbed in the proximal intestine. The recent cloning and characterization of a haem carrier protein 1 (HCP 1) has provided a candidate intestinal haem transporter. The current studies describe the expression and functional analysis of HCP1 in cultured Caco-2 cells, a commonly used model of human intestinal cells. HCP1 mRNA expression in other cell types was also studied. The uptake of 55Fe labeled haem was determined in cells under different experimental conditions and HCP1 expression was measured by RT-PCR and immunohistochemistry. mRNA and protein expressions increased in Caco-2 cells transduced with HCP1 adenoviral plasmid, and consequently 55Fe haem uptake was higher in these cells. Haem uptake was also increased in fully differentiated Caco-2 cells compared to undifferentiated cells. Preincubation of cells with desferrioxamine (DFO, to deplete cells of iron) had no effect on HCP1 expression or haem uptake. Treatment with CdCl2 (to induce haem oxygenase, HO-1) enhanced HCP1 expression and increased haem uptake into the cells. HCP1 expression and function were found to be adaptive to the rate of haem degradation by HO-1. Furthermore, HCP1 expression in different cells implies a functional role in tissues other than the duodenum.  相似文献   

16.
Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c(554); and cycB, cytochrome c(m)(552). The deduced protein sequences of HAO, c(554), and c(m)(552) were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes c(m)(552), NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c(554) gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c(554) gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.  相似文献   

17.
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

18.
For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process-related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP-ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb-production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up- and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in-process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.  相似文献   

19.
Host cell proteins (HCPs) must be adequately removed from recombinant therapeutics by downstream processing to ensure patient safety, product quality, and regulatory compliance. HCP process clearance is typically monitored by enzyme-linked immunosorbent assay (ELISA) using a polyclonal reagent. Recently, mass spectrometry (MS) has been used to identify specific HCP process impurities and monitor their clearance. Despite this capability, ELISA remains the preferred analytical approach due to its simplicity and throughput. There are, however, inherent difficulties reconciling the protein-centric results of MS characterization with ELISA, or providing assurance that ELISA has acceptable coverage against all process-specific HCP impurities that could pose safety or efficacy risks. Here, we describe efficient determination of ELISA reagent coverage by proteomic analysis following affinity purification with a polyclonal anti-HCP reagent (AP-MS). The resulting HCP identifications can be compared with the actual downstream process impurities for a given process to enable a highly focused assessment of ELISA reagent suitability. We illustrate the utility of this approach by performing coverage evaluation of an anti-HCP polyclonal against both an HCP immunogen and the downstream HCP impurities identified in a therapeutic monoclonal antibody after Protein A purification. The overall goal is to strategically implement affinity-based mass spectrometry as part of a holistic framework for evaluating HCP process clearance, ELISA reagent coverage, and process clearance risks. We envision coverage analysis by AP-MS will further enable a framework for HCP impurity analysis driven by characterization of actual product-specific process impurities, complimenting analytical methods centered on consideration of the total host cell proteome.  相似文献   

20.
《MABS-AUSTIN》2013,5(6):1128-1137
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ~10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号