首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent developments in plant membrane transport, particularly concerning the vacuolar and plasma membranes, have increased our understanding of molecular aspects of primary pumps, carrier systems and ion channels.  相似文献   

3.
Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.  相似文献   

4.
The medical beliefs of a people have in the past been studied principally by cultural anthropologists. The focus of these studies is usually on intrasocietal dynamics and cultural relativism—a striking orientation. However, beliefs about disease are integral to the way groups have and continue to adapt, and are thus important to both social and biological scientists. In order to study the role of medical beliefs in the adaptation of the group, a comparative approach is needed. This requires viewing these beliefs more generically, comparing their symbolic properties, and analyzing how they are used in explaining and dealing with actual occurrences of disease. The concept of a taxonomy of disease is introduced, as well as the notion of different semantic regions in the taxonomy. In the attempt to clarify the biological significance of a group's taxonomy of disease, and of its mode of operation, the ideas of uncertainty and information are employed. The significance and fruitfulness of this approach is discussed.  相似文献   

5.
6.
Several possible models of two sequential and two simultaneous carriers of different affinities are theoretically analysed. Following the analysis we suggest for each model an experimental procedure capable of testing and rejecting the model.  相似文献   

7.
8.
Equations for the transport of solutes through a membrane are derived, taking into account both the membrane volume and the partitioning kinetics, and have been found to involve two rate constants for solute transport, namely, those corresponding to solute transport from the solution to the membrane (k1) and from the membrane to the solution (k2). The time course followed before partitioning equilibrium has been attained, which is usually ignored, is shown to depend strongly on the relative magnitudes of k1 and k2.  相似文献   

9.
Freeze-fracture electronmicroscopy has been used to examine the membrane ultrastructure of human red blood cells in the presence of inhibitors of chloride exchange. The extent of inhibition was correlated with a decrease of intramembrane particle density on the B-fracture face. Dimethylsulfoxide (DMSO) and glycerol, which markedly and reversibly reduced the intramembrane particle density, were shown to drastically and reversibly inhibit chloride self-exchange. DMSO was shown to be a noncompetitive inhibitor of chloride flux.  相似文献   

10.
A number of proteins that are necessary for membrane transport have been identified using cell-free assays and yeast genetics. Although our knowledge of transport mechanisms remains limited, common themes are clearly emerging. In particular, specific GTP-binding proteins appear to be involved, not only at all steps of membrane traffic but also at more than one check-point within each step. The ordered sequence of events occurring during vesicle formation, targeting and fusion may be regulated in a stepwise manner by specific GTP-dependent switches, which act as modular elements of the transport mechanism.  相似文献   

11.
Several possible models of two sequential and two simultaneous carriers of different affinities are theoretically analysed. Following the analysis we suggest for each model an experimental procedure capable of testing and rejecting the model.  相似文献   

12.
A computational methodology for accurately predicting flow and oxygen-transport characteristics and performance of an intravenous membrane oxygenator (IMO) device is developed, tested, and validated. This methodology uses extensive numerical simulations of three-dimensional computational models to determine flow-mixing characteristics and oxygen-transfer performance, and analytical models to indirectly validate numerical predictions with experimental data, using both blood and water as working fluids. Direct numerical simulations for IMO stationary and pulsating balloons predict flow field and oxygen transport performance in response to changes in the device length, number of and balloon pulsation frequency. Multifiber models are used to investigate interfiber interference and length effects for a stationary balloon whereas a single fiber model is used to analyze the effect of balloon pulsations on velocity and oxygen concentration fields and to evaluate oxygen transfer rates. An analytical lumped model is developed and validated by comparing its numerical predictions with experimental data. Numerical results demonstrate that oxygen transfer rates for a stationary balloon regime decrease with increasing number of fibers, independent of the fluid type. The oxygen transfer rate ratio obtained with blood and water is approximately two. Balloon pulsations show an effective and enhanced flow mixing, with time-dependent recirculating flows around the fibers regions which induce higher oxygen transfer rates. The mass transfer rates increase approximately 100% and 80%, with water and blood, respectively, compared with stationary balloon operation. Calculations with combinations of frequency, number of fibers, fiber length and diameter, and inlet volumetric flow rates, agree well with the reported experimental results, and provide a solid comparative base for analysis, predictions, and comparisons with numerical and experimental data.  相似文献   

13.
14.
A lag time during the period of variation in solute concentration in the receiver phase and overshoot in that in the membrane phase have been predicted to occur with a kinetic model for membrane transport which takes into account both the membrane volume and the partitioning kinetics (Makino et al., Biophys. Chem. 35 (1990) 85). The duration of the lag time becomes longest when the donor and receiver phases have the same volume. This maximum grows in length with increase in the partition coefficient, tending to be proportional to the volume fraction of the receiver phase. Moreover, it displays an increase in length with decreasing membrane volume fraction. Overshoot occurs only when the volume fraction of the receiver phase is greater than that of the donor. Overshoot is observed during the earlier stages of membrane transport when the partition coefficient is smaller or the volume fraction of the receiver phase is larger.  相似文献   

15.
We propose a novel class of biosensors based on membrane bound receptors or transport proteins as the sensing element. The protein is incorporated in a planar lipid bilayer which covers the transducer. The transducer may detect an electric current, a voltage, or a change in fluorescence. A prototype lactose sensor is presented which consists of a quartz slide covered by a lipid membrane containing the protein lactose permease from Escherichia coli. This protein is a lactose/H+ cotransporter, hence lactose in the external medium initiates lactose/H+ cotransport across the lipid membrane. This leads to a rise in proton concentration in the small volume between the lipid membrane and the quartz surface which can be detected by a pH-sensitive fluorescence dye.  相似文献   

16.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7-10(-4) M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ and inhibited by ATPase inhibitors such as N,N'-dicylclohexyl-carbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphroylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K+ gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

17.
18.
Substances which can perturb the transmembrane cation balance in a predictable manner have wide-ranging uses in the study of cellular processes. We have undertaken to examine transmembrane calcium transport on the molecular level through the design and synthesis of a series of ionophoric peptides as models for protein-mediated calcium transport. General mechanisms for carrier-mediated membrane transport are discussed. Cation transport profiles are presented for transport by synthetic peptides of structure cyclo(Glu(OR)-Sar-Gly-(N-R1)-Gly)2, where R = benzyl ester or H; R1 = n-decyl or cyclohexyl. Transport of physiologically abundant cations across "liquid membranes" in Pressman cells mediated by cyclo(Glu-Sar-Gly-(N-decyl)Gly)2 was observed to be essentially calcium specific, as long as calcium ions were present in the system. Multilamellar and unilamellar phosphatidylcholine vesicles were each found to be emptied of internal 45Ca2+ ions upon addition of cyclo(Glu(OBz)-Sar-Gly-(N-cyclohexyl)Gly)2 to the vesicle suspension. The results are compared with the naturally occurring calcium ionophore A23187.  相似文献   

19.
Mathematical modeling was used to evaluate experimental data for bacterial binding protein-dependent transport systems. Two simple models were considered in which ligand-free periplasmic binding protein interacts with the membrane-bound components of transport. In one, this interaction was viewed as a competition with the ligand-bound binding protein, whereas in the other, it was considered to be a consequence of the complexes formed during the transport process itself. Two sets of kinetic parameters were derived for each model that fit the available experimental results for the maltose system. By contrast, a model that omitted the interaction of ligand-free binding protein did not fit the experimental data. Some applications of the successful models for the interpretation of existing mutant data are illustrated, as well as the possibilities of using mutant data to test the original models and sets of kinetic parameters. Practical suggestions are given for further experimental design.  相似文献   

20.
To study the dynamical behavior of active membrane transport models, Vieira and Bisch proposed a complex chemical network (model 3) with two cycles. One cycle involves monomers as pump units while the other cycle uses dimers. In their work, the stoichiometric network analysis was used to study the stability of steady states and the bifurcation analysis was done through numerical methods. They concluded that the possibility of multiple steady states in the model 3 could not be discarded. Here, a zero eigenvalue analysis is applied to prove the impossibility of multiple positive steady states in the model 3. (A positive steady state is one for which all species have positive concentrations.) Moreover, the result is generalized to its family networks. Received: 6 April 1998 / Revised version: 16 October 1998 / Accepted: 28 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号