首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an increasing demand for efficient and effective methods to engineer protein variants for industrial applications, structural biology and drug development. We describe a PCR-based strategy that produces multi-site-saturation mutagenic expression library using a circular plasmid carrying the wild-type gene. This restriction digestion- and ligation-independent method involves three steps: 1) synthesis of the degenerate oligonucleotide primers, 2) incorporation of the mutations through PCR, 3) transformation into the expression host. Our strategy is demonstrated through successful construction of an E. coli K12 malic enzyme expression library that contains members with simultaneous mutations on amino acid residues G311, D345 and G397. This method is in principle compatible with any circular vector that can be propagated with a dam+ E. coli host to generate protein variant library with multiple changes, including mutation, short sequence deletion and insertion, or any mix of them.  相似文献   

2.
The overexpression of G protein-coupled receptors (GPCRs) and of many other heterologous membrane proteins in simple microbial hosts, such as the bacterium Escherichia coli, often results in protein mistargeting, aggregation into inclusion bodies or cytoplasmic degradation. Furthermore, membrane protein production is very frequently accompanied by severe cell toxicity. In this work, we have employed a genetic strategy to isolate E. coli mutants that produce markedly increased amounts of the human central cannabinoid receptor (CB1), a pharmacologically significant GPCR that expresses very poorly in wild-type E. coli. By utilizing a CB1 fusion with the green fluorescent protein (GFP) and fluorescence-activated cell sorting (FACS), we screened an E. coli transposon library and identified an insertion in dnaJ that resulted in a large increase in CB1-GFP fluorescence and a dramatic enhancement in bacterial production of membrane-integrated CB1. Furthermore, the dnaJ::Tn5 inactivation suppressed the severe cytotoxicity associated with CB1 production. This revealed an unexpected inhibitory role of the chaperone/ co-chaperone DnaJ in the protein folding or membrane insertion of bacterially produced CB1. Our strategy can be easily adapted to identify expression bottlenecks for different GPCRs or any other integral membrane protein, provide useful and unanticipated mechanistic insights, and assist in the construction of genetically engineered E. coli strains for efficient heterologous membrane protein production.  相似文献   

3.
The Streptomyces coelicolor gene SCC88.10c encodes a protein (RNase ES) which is homologous to endoribonucleases in the RNase E/G family. We expressed S. coelicolor RNase ES as a 6 x His-tagged protein in an Escherichia coli mutant carrying a rng (which encodes RNase G) or a rne (which encodes RNase E) mutation to study whether S. coelicolor RNase ES is able to complement these mutations in host E. coli cells. The results clearly indicated that the S. coelicolor RNase ES can partially abrogate either the rng::cat or rne-1 mutation, as measured by the ability to suppress the several aberrant phenotypes resulting from the rng or rne mutation. Thus, S. coelicolor RNase ES appears to have the dual ability to supplant the functions of both RNase G and RNase E in E. coli.  相似文献   

4.
Pharmaceutically relevant virus-like particles (VLPs) can potentially be manufactured cheaply and efficiently through in vitro assembly of viral structural protein in cell-free reactors, but a bottleneck for this processing route is the currently low-level expression of soluble viral protein in efficient cell factories such as Escherichia coli (E. coli). Here, we report expression levels of up to 180 mg L(-1) that are achievable from low-cell-density E. coli cultures using a simple and low cost strategy. We investigated effects of host strain, plasmid, inducer concentration, pre-induction temperature and cell density at induction with design of experiment (DOE). The statistical approach successfully identified significant effects and their interactions, and provided insights into the role of codon-usage effects in expression of viral structural protein. In particular, our results support the notion that full codon optimization may be unnecessary to improve expression of viral genes rich in E. coli rare codons; using a strategically modified host cell could provide a simpler and cheaper alternative.  相似文献   

5.
yggG是从大肠杆菌全基因组文库中钓取并克隆的Era结合蛋白基因,研究表明该基因表达的YggG294(amino acids 1-294)蛋白对宿主菌的生长具有强烈的抑制作用。为了阐明YggG与Era间的相互关系,构建可同时可控性表达Era和YggG294蛋白的双启动子表达载体。利用所构建的双启动子表达载体在同一细胞中同时可控性地表达YggG294与Era蛋白。结果显示,在不表达和少量表达YggG294的细菌细胞内,Era 的表达量与总蛋白量的比值随着诱导时间增加而增高,而YggG294大量表达的细菌内Era 的表达量与总蛋白量的比值基本保持不变;Era 蛋白的预表达对YggG294表达所引起的细菌生长率下降无影响。由此可以推论,YggG294的过表达引起宿主菌生长抑制进而影响了Era蛋白的进一步表达,而YggG294的过表达引起宿主菌生长抑制与YggG和Era蛋白间的相互作用无关  相似文献   

6.
BACKGROUND: Antibody fragments are molecules widely used for diagnosis and therapy. A large amount of protein is frequently required for such applications. New approaches using folding reporter enzymes have recently been proposed to increase soluble expression of foreign proteins in Escherichia coli. To date, these methods have only been used to screen for proteins with better folding properties but have never been used to select from a large library of mutants. In this paper we apply one of these methods to select mutations that increase the soluble expression of two antibody fragments in the cytoplasm of E. coli. RESULTS: We used the beta-galactosidase alpha-complementation system to monitor and evolve two antibody fragments for high expression levels in E. coli cytoplasm. After four rounds of mutagenesis and selection from large library repertoires (>107 clones), clones exhibiting high levels of beta-galactosidase activity were isolated. These clones expressed a higher amount of soluble fusion protein than the wild type in the cytoplasm, particularly in a strain deficient in the cytoplasmic Lon protease. The increase in the soluble expression level of the unfused scFv was, however, much less pronounced, and the unfused proteins proved to be more aggregation prone than the wild type. In addition, the soluble expression levels were not correlated with the beta-galactosidase activity present in the cells. CONCLUSION: This is the first report of a selection for soluble protein expression using a fusion reporter method. Contrary to anticipated results, high enzymatic activity did not correlate with the soluble protein expression level. This was presumably due to free alpha-peptide released from the protein fusion by the host proteases. This means that the alpha-complementation assay does not sense the fusion expression level, as hypothesized, but rather the amount of free released alpha-peptide. Thus, the system does not select, in our case, for higher soluble protein expression level but rather for higher protease susceptibility of the fusion protein.  相似文献   

7.
8.
Two extragenic suppressors which allow temperature-sensitive htrA mutant Escherichia coli bacteria to grow at 42 degrees C and simultaneously acquire a cold-sensitive phenotype at 30 degrees C were isolated. The cold-sensitive phenotype exhibited by one of the mutants was used to clone the corresponding wild-type copy of the suppressor gene. This was done through complementation with a mini-mu plasmid E. coli DNA library, by selection for colonies which were no longer cold sensitive, at 30 degrees C. The cloned suppressor gene was shown to complement the cold-sensitive phenotype of both suppressor mutations. It was mapped to 68 min on the E. coli chromosome through hybridization to the Kohara library of overlapping lambda transducing bacteriophages, which covers the entire E. coli chromosome. The complementing gene was further subcloned on an 830-base-pair (bp) DNA fragment. DNA sequencing revealed the presence of an open reading frame (ORF) of 333 bp which could encode a protein of 12,359 Mr. Subcloning of various DNA fragments from within this 830-bp DNA fragment suggests that this ORF is most likely responsible for suppression of the cold-sensitive phenotype of the htrA suppressor bacteria. By using a T7 polymerase system to overproduce plasmid-encoded proteins, a protein of approximately 12,000 Mr was produced by this cloned DNA fragment. This ORF defines a previously undiscovered gene in E. coli, called sohA (suppressor of htrA).  相似文献   

9.
10.
A major obstacle associated with recombinant protein over-expression in Escherichia coli is the production of insoluble inclusion bodies, a problem particularly pronounced with Mycobacterium tuberculosis proteins. One strategy to overcome the formation of inclusion bodies is to use an expression host that is more closely related to the organism from which the proteins are derived. Here we describe methods for efficiently identifying M. tuberculosis proteins that express in soluble form in Mycobacterium smegmatis. We have adapted the M. smegmatis expression vector pYUB1049 to the Gateway cloning system by the addition of att recombination recognition sequences. The resulting vector, designated pDESTsmg, is compatible with our in-house Gateway methods for E. coli expression. A target can be subcloned into pDESTsmg by a simple LR reaction using an entry clone generated for E. coli expression, removing the need to design new primers and re-clone target DNA. Proteins are expressed by culturing the M. smegmatis strain mc(2)4517 in autoinduction media supplemented with Tween 80. The media used are the same as those used for expression of proteins in E. coli, simplifying and reducing the cost of the switch to an alternative host. The methods have been applied to a set of M. tuberculosis proteins that form inclusion bodies when expressed in E. coli. We found that five of eight of these previously insoluble proteins become soluble when expressed in M. smegmatis, demonstrating that this is an efficient salvage strategy.  相似文献   

11.
The oligodeoxyribonucleotides, pCCCAGCCTCAA, which is complementary to nucleotides 5274--4284 of bacteriophage phi X174 viral DNA , and pCCCAGCCTAAA, which corresponds to the same sequence with a C leads to A change at the ninth nucleotide, were synthesized enzymatically. The second of these oligonucleotides was used as a primer for E. coli DNA polymerase I, from which the 5'-exonculease has been removed by proteolysis (Klenow enzyme), on wild-type phi X174 viral DNA template. After ligation, this yielded closed circular heteroduplex DNA with a G, A mismatch at nucleotide 5276. Transfection of E. coli spheroplasts with the heteroduplex DNA produced phage mutated at this nucleotide (G leads to T in the viral DNA) with high efficiency (13%). The mutant DNA, which corresponds to the gene B mutant am16, was reverted (T leads to G) by the wild type oligonucleotide with an efficiency of 19%. The nucleotide changes were established by sequence determination of the mutated viral DNA using the enzymatic terminator method. The production of specific transversion mutations, together with a previous demonstration of specific transition mutations (1), established that short enzymatically synthesized oligodeoxyribonucleotides can be used to induce any class of single nucleotide replacement with high efficiency and thus provide a powerful tool for specific genetic manipulations in circular genomes like that of phi X174.  相似文献   

12.
13.
Yin J  Seo KY  Loechler EL 《DNA Repair》2004,3(3):323-334
Benzo[a]pyrene (B[a]P), a potent mutagen/carcinogen, is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g. GC --> TA, GC --> AT, etc.) principally via its major adduct [+ta]-B[a]P-N2-dG. Recent findings suggest that different lesion bypass DNA polymerases may be involved in different mutagenic pathways, which is the subject of this report. [+ta]-B[a]P-N2-dG built into a plasmid in a 5'-TGT sequence gives approximately equal numbers of G --> T and G --> A mutations when host E. coli are UV irradiated prior to transformation, so this sequence context was chosen to investigate what DNA polymerases are involved in G --> T versus G --> A mutations. G --> T mutations decline (>10-fold) if E. coli either are not UV-irradiated or are deficient in DNA polymerase V ((delta)umuD/C), demonstrating a role for damage-inducible DNA Pol V in a G --> T pathway. G --> T mutations are not affected by transformation into E. coli deficient in either DNA polymerases II or IV. While the work herein was in progress, Lenne-Samuel et al. [Mol. Microbiol. 38 (2000) 299] built the same adduct into a plasmid in a 5'-GGA sequence, and showed that the frequency of G --> T mutations was similar in UV-irradiated and unirradiated host E. coli cells, suggesting no involvement by damage-inducible, lesion bypass DNA polymerases (i.e., not II, IV or V); furthermore, a role for DNA Pol V was explicitly ruled out. The easiest way to reconcile the findings of Lenne-Samuel et al. with the findings herein is if two G --> T mutagenic pathways exist for [+ta]-B[a]P-N2-dG, where sequence context dictates which pathway is followed. In contrast to the G --> T mutations, herein G --> A mutations from [+ta]-B[a]P-N2-dG in the 5'-TGT sequence context are shown not to be affected by UV-irradiation of host E. coli, and are not dependent on DNA Pol V, or Pol II, Pol IV, or the damage-inducible, but SOS-independent UVM system. Published studies, however, have shown that G --> A mutations are usually enhanced by UV-irradiation of host E. coli prior to the introduction of plasmids either site-specifically modified with [+ta]-B[a]P-N2-dG or randomly adducted with (+)-anti-B[a]PDE; both findings imply the involvement of a lesion-bypass DNA polymerase. These disparate results suggest the existence of two G --> A mutagenic pathways for [+ta]-B[a]P-N2-dG as well, although confirmation of this awaits further study. In conclusion, a comparison between the evidence presented herein and published findings suggests the existence of two distinct mutagenic pathways for both G --> T and G --> A mutations from [+ta]-B[a]P-N2-dG, where in each case one pathway is not damage-inducible and not dependent on a lesion-bypass DNA polymerase, while the second pathway is damage-inducible and dependent on a lesion-bypass DNA polymerase. Furthermore, DNA sequence context appears to dictate which pathway (as defined by the involvement of different DNA polymerases) is followed in each case.  相似文献   

14.
A genomic DNA library of the rumen bacterium Streptococcus bovis was constructed in Escherichia coli, and recombinant plasmids able to complement proA and proB mutations of the host were found. Southern hybridization and restriction analysis showed that a 3.5-kb fragment of S. bovis DNA contained two genes, organized in an operon and coding for enzymes functionally similar to the glutamyl phosphate reductase-glutamyl kinase enzyme complex that in E. coli catalyzes the first step of proline biosynthesis. Complementation of the E. coli mutations was observed with the fragment inserted in both orientations, which suggested that the S. bovis proBA operon was transcribed from its own promoter. Genetic and biochemical data suggested that the proline biosynthetic pathway of S. bovis is similar to the one previously characterized for E. coli.  相似文献   

15.
The upper stem of helix 34, consisting of the base-paired sequences C1063G1064U1065 and A1191C1192G1193, is suggested to be involved in the binding of spectinomycin. In E. coli 16S rRNA, each of the three mutations at position C1192 confers resistance to spectinomycin. In chloroplast ribosomes from tobacco plants and algae, resistance is conferred by single mutations at positions 1064, 1191, and 1193 (E. coli numbering). Since each of these mutations disrupt any of the three basepairs in the upper stem of helix 34, it has been postulated that spectinomycin can bind to this region and inhibit protein synthesis, only if its nucleotides are basepaired. We have tested this hypothesis by introducing disruptive and compensatory mutations that alter the basepair G1064-C1192. Using the specialized ribosome system, the translational activity of such mutants was determined, in the absence and presence of spectinomycin. We show that any of the three disruptive mutations A1064, C1064, and U1064 confer resistance, in accordance with the model for spectinomycin binding. Compensatory mutations A1064U1192, C1064G1192, and U1064A1192, however, maintained the resistance. This indicates that a basepaired conformation as such is not sufficient for spectinomycin binding, but rather that a G-C pair at positions 1064 and 1192 is required. In addition, we find that the translational activity of specialized ribosomes containing the mutations C1064G1192 is 5-fold lower compared to that of ribosomes containing any of the other mutations introduced, regardless whether spectinomycin is present or not. Since the introduction of C1064G1192 is expected to increase the stability of the upper stem of helix 34, we suggest that these mutations impair ribosome function by preventing the (transient) disruption of the upper stem. By analogy, we speculate that spectinomycin blocks protein synthesis by stabilizing the upper stem. In both cases, the 30S subunit would be frozen into an inactive conformation.  相似文献   

16.
Twenty-four genes from Salmonella typhimurium that affect DNA replication were isolated from a lambda-Salmonella genomic library by lysogenic complementation of temperature-sensitive mutants of Salmonella or E. coli, using a new plaque complementation assay. The complementing lambda clones, which make red plaques in this assay, and noncomplementing mutant derivatives, which make uncolored plaques, were used to further characterize the temperature-sensitive Salmonella mutants and to establish the functional similarity of E. coli and Salmonella DNA replication genes. For 17 of 18 E. coli mutants representing distinct loci, a Salmonella gene that complemented the mutant was found. This result indicates that single Salmonella replication proteins are able to function in otherwise all E. coli replication complexes and suggests that the detailed properties of Salmonella and E. coli replication proteins are very similar. The other seven Salmonella genes that were cloned were unrelated functionally to any E. coli genes examined. --As an aid to the derivation of chromosomal mutations affecting some of the cloned genes, a general method was developed for placing a transposon in the Salmonella chromosome in a segment corresponding to cloned DNA. Chromosomal mutations were derived in Salmonella affecting a gene (dnaA) that was cloned by complementation of an E. coli mutant by using the transposon-encoded drug resistance as a selectable marker in local mutagenesis.  相似文献   

17.
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
The involvement of the Escherichia coli rep protein in the replication of M13 chimeric deoxyribonucleic acids (DNAs) carrying the E. coli chromosomal DNA replication origin (oriC) has been examined. Previous studies indicate that the cloning of a 3,550-base-pair sequence of chromosomal DNA containing oriC into an M13 vector allows extensive replication of the M13 oriC chimeric DNA in an E. coli rep-3 mutant. We have extended these studies by preparing a 330-base-pair deletion that specifically deletes the oriC sequence in the M13 oriC DNAs, to demonstrate that the replication observed in the rep-3 host is dependent on the cloned origin. Thus, a DNA-unwinding enzyme other than the rep protein may be involved in the strand separation process accompanying replication which initiates at oriC in the M13 oriC chimeric DNAs and in the E. coli chromosome. The rep assay used for assessing the functionality of the cloned oriC is useful for analysis of any rep-independent origin of replication functional in E. coli. A direct selection for a cloned origin of replication is possible in the rep-3 recA56 host. Since the cloned origin is nonessential for propagation of the M13 chimeric phage in a rep+ host, mutations in the cloned origin may be constructed, and the mutant phage may be examined by a simple transductional analysis of the rep-3 recA56 mutant strain.  相似文献   

19.
Branched-chain keto acid dehydrogenase is a multienzyme complex which is required for the metabolism of the branched-chain amino acids in Pseudomonas putida. The structural genes encoding all four proteins of the bkd operon have been cloned, and their nucleotide sequences have been determined (G. Burns, K. T. Madhusudhan, K. Hatter, and J. R. Sokatch, p. 177-184 in S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan [ed.], Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology, American Society for Microbiology, Washington D.C., 1990). An open reading frame which encoded a protein with 36.5% amino acid identity to the leucine-responsive regulatory protein (Lrp) of Escherichia coli was found immediately upstream of the bkd operon. Chromosomal mutations affecting this gene, named bkdR, resulted in a loss of ability to use branched-chain amino acids as carbon and energy sources and failure to produce branched-chain keto acid dehydrogenase. These mutations were complemented in trans by plasmids which contained intact bkdR. Mutations affecting bkdR did not have any effect on transport of branched-chain amino acids or transamination. Therefore, the bkdR gene product must affect expression of the bkd operon and regulation must be positive. Mutations affecting bkdR could also be complemented by plasmids containing lrp of E. coli. This is the first instance of a Lrp-like protein demonstrated to regulate expression of an operon outside of E. coli.  相似文献   

20.
The heating of protein preparations of mesophilic organism (e.g., E. coli) produces the obliteration of all soluble multimeric proteins from this organism. In this way, if a multimeric enzyme from a thermophilic microorganism is expressed in these mesophilic hosts, the only large protein remaining soluble in the preparation after heating is the thermophilic enzyme. These large proteins may be then selectively adsorbed on lowly activated anionic exchangers, enabling their full purification in just these two simple steps. This strategy has been applied to the purification of an alpha-galactosidase and a beta-galactosidase from Thermus sp. strain T2, both expressed in E. coli, achieving the almost full purification of both enzymes in only these two simple steps. This very simple strategy seems to be of general applicability to the purification of any thermophilic multimeric enzyme expressed in a mesophilic host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号