首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Neuronal homeostasis requires a balance between anabolic and catabolic processes. Eukaryotic cells use two distinct systems for the degradation of unused proteins: the ubiquitin-proteasome system and the autophagic system. The autophagic system is also necessary for the degradation of bulk amounts of proteins and organelles. We have searched for new autophagy-related genes in the Caenorhabditis elegans genome and investigated their role in a polyglutamine (polyQ) disease model. Here, we have shown that inactivation of these genes intensified the toxicity of expanded polyQ in C. elegans neurons and muscles, and at the same time inactivation of CeTor reduced the polyQ toxicity.  相似文献   

2.
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.  相似文献   

3.
4.
Tat-mediated protein delivery in living Caenorhabditis elegans   总被引:2,自引:0,他引:2  
The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm.  相似文献   

5.
6.
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation.  相似文献   

7.
The Caenorhabditis elegans LIM homeobox gene lin-11 plays crucial roles in the morphogenesis of the reproductive system and differentiation of several neurons. The expression of lin-11 in different tissues is regulated by enhancer regions located upstream as well as within lin-11 introns. These regions are functionally separable suggesting that multiple regulatory inputs operate to control the spatiotemporal pattern of lin-11 expression. To further dissect apart the nature of lin-11 regulation we focused on three Caenorhabditis species C. briggsae, C. remanei, and C. brenneri that are substantially diverged from C. elegans but share almost identical vulval morphology. We show that, in these species, the 5′ region of lin-11 possesses conserved sequences to activate lin-11 expression in the reproductive system. Analysis of the in vivo role of these sequences in C. elegans has led to the identification of three functionally distinct enhancers for the vulva, VC neurons, and uterine π lineage cells. We found that the π enhancer is regulated by FOS homolog FOS-1 and LIN-12/Notch pathway effectors, LAG-1 (Su(H)/CBF1 family) and EGL-43 (EVI1 family). These results indicate that multiple factors cooperate to regulate π-specific expression of lin-11 and together with other findings suggest that the mechanism of lin-11 regulation by LIN-12/Notch signaling is evolutionarily conserved in Caenorhabditis species. Our work demonstrates that 4-way comparison is a powerful tool to study conserved mechanisms of gene regulation in C. elegans and other nematodes.  相似文献   

8.
Caenorhabditis elegans possesses two p97/VCP/Cdc48p homologues, named CDC-48.1 (C06A1.1) and CDC-48.2 (C41C4.8), and their expression patterns and levels are differently regulated. To clarify the regulatory mechanisms of differential expression of two p97 proteins of C. elegans, we performed detailed deletion analysis of their promoter regions. We found that the promoter of cdc-48.1 contains two regions necessary for embryonic and for post-embryonic expression, while the promoter of cdc-48.2 contains the single region necessary for embryonic expression. In particular, two elements (Element A and Element B) and three conserved boxes (Box a, Box b and Box c) were essential for cdc-48.1 expression in embryos and at post-embryonic stages, respectively. By using South-Western blotting and MALDI-TOF MS analysis, we identified HMG-12 and CAR-1 as proteins that bind to Element A and Element B, respectively, from the embryonic nuclear extract. Importantly, we found the decreased expression of p97 in embryos prepared from hmg-12(RNAi) or car-1(RNAi) worms. These results indicate that both HMG-12 and CAR-1 play important roles in embryonic expression of cdc-48.1.  相似文献   

9.
10.
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.  相似文献   

11.
12.
13.
In screens for Caenorhabditis elegans mutants defective in vulval morphogenesis, we isolated multiple mutants in which the uterus and the vulva fail to make a functional connection, resulting in an egg-laying defective phenotype. Two of these connection of gonad defective (Cog) mutants carry alleles of the egl-26 gene. We demonstrate that vulval lineages in egl-26 mutant animals are normal, but one vulval cell, vulF, adopts an abnormal morphology. This results in formation of an abnormally thick layer of vulval tissue at the apex of the vulva and a physical blockage of the exit to the vulva from the uterus. egl-26 was cloned and is predicted to encode a novel protein. Mosaic analysis indicates that egl-26 activity is required in the primary vulval lineage for vulF morphogenesis. Expression of a functional translational fusion of EGL-26 to GFP was observed within the primary vulval lineage only in vulE, which neighbors vulF. EGL-26 is localized at the apical edge of the vulE cell. It is thus possible that vulE acts to instruct morphological changes in the neighboring cell, vulF, in an interaction mediated by EGL-26.  相似文献   

14.
15.
The Rho GTPase members and their effector proteins, such as the Wiskott-Aldrich syndrome protein (WASP), play critical roles in regulating actin dynamics that affect cell motility, endocytosis, cell division, and transport. It is well established that Caenorhabditis elegans wsp-1 plays an essential role in embryonic development. We were interested in the role of the C. elegans protein WSP-1 in the adult nematode. In this report, we show that a deletion mutant of wsp-1 exhibits a strong sensitivity to the neuromuscular inhibitor aldicarb. Transgenic rescue experiments demonstrated that neuronal expression of WSP-1 rescued this phenotype and that it required a functional WSP-1 Cdc42/Rac interactive binding domain. WSP-1-GFP fusion protein was found localized presynaptically, immediately adjacent to the synaptic protein RAB-3. Strong genetic interactions with wsp-1 and other genes involved in different stages of synaptic transmission were observed as the wsp-1(gm324) mutation suppresses the aldicarb resistance seen in unc-13(e51), unc-11(e47), and snt-1 (md290) mutants. These results provide genetic and pharmacological evidence that WSP-1 plays an essential role to stabilize the actin cytoskeleton at the neuronal active zone of the neuromuscular junction to restrain synaptic vesicle release.  相似文献   

16.
Im SH  Lee J 《FEBS letters》2003,554(3):455-461
Many protein components of telomeres, the multifunctional DNA-protein complexes at the ends of eukaryotic chromosomes, have been identified in diverse species ranging from yeast to humans. In Caenorhabditis elegans, CEH-37 has been identified by a yeast one hybrid screen to be a double-stranded telomere-binding protein. However, the role of CEH-37 in telomere function is unclear because a deletion mutation in this gene does not cause severe telomere defects. This observation raises the possibility of the presence of genetic redundancy. To identify additional double-stranded telomere-binding proteins in C. elegans, we used a different approach, namely, a proteomic approach. Affinity chromatography followed by Finnigan LCQ ion trap mass spectrometer analysis allowed us to identify several candidate proteins. We further characterized one of these, HMG-5, which is encoded by F45E4.9. HMG-5 bound to double-stranded telomere in vitro as shown by competition assays. At least two telomeric DNA repeats were needed for this binding. HMG-5 was expressed in the nuclei of the oocytes and all embryonic cells, but not in the hatched larvae or adults. HMG-5 mainly localized to the chromosomal ends, indicating that HMG-5 also binds to telomeres in vivo. These observations suggest that HMG-5 may participate, together with CEH-37, in early embryogenesis by acting at the telomeres.  相似文献   

17.
18.
Caenorhabditis elegans reticulon interacts with RME-1 during embryogenesis   总被引:4,自引:0,他引:4  
Reticulon (RTN) family proteins are localized in the endoplasmic reticulum (ER). At least four different RTN genes have been identified in mammals, but in most cases, the functions of the encoded proteins except mammalian RTN4-A and RTN4-B are unknown. Each RTN gene produces 1-3 proteins by different promoters and alternative splicing. In Caenorhabditis elegans, there is a single gene (rtn gene) encoding three reticulon proteins, nRTN-A, B, and C. mRNA of nRTN-C is expressed in germ cells and embryos. However, nRTN-C protein is only expressed during embryogenesis and rapidly disappears after hatch. By yeast two-hybrid screening, two clones encoding the same C-terminal region of RME-1, a protein functioning in the endocytic recycling, were isolated. These findings suggest that nRTN-C functions in the endocytic pathway during embryogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号