首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

2.
3.
Although increasing evidence has suggested that the hMSH5 protein plays an important role in meiotic and mitotic DNA recombinational repair, its precise functions in recombination and DNA damage response are presently elusive. Here we show that the interaction between hMSH5 and c-Abl confers ionizing radiation (IR)-induced apoptotic response by promoting c-Abl activation and p73 accumulation, and these effects are greatly enhanced in cells expressing hMSH5P29S (i.e. the hMSH5 variant possessing a proline to serine change within the N-terminal (Px)5 dipeptide repeat). Our current study provides the first evidence that the (Px)5 dipeptide repeat plays an important role in modulating the interaction between hMSH5 and c-Abl and alteration of this dipeptide repeat in hMSH5P29S leads to increased IR sensitivity owing to enhanced caspase-3-mediated apoptosis. In addition, RNAi-mediated hMSH5 silencing leads to the reduction of apoptosis in IR-treated cells. In short, this study implicates a role for hMSH5 in DNA damage response involving c-Abl and p73, and suggests that mutations impairing this process could significantly affect normal cellular responses to anti-cancer treatments.  相似文献   

4.
S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53wt) or being p(HCT-116 p53−/−), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53−/− xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53wt cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53wt cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75NTR, p53 and Bax.  相似文献   

5.
6.
Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]  相似文献   

7.
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.  相似文献   

8.
p33(ING1) enhances UVB-induced apoptosis in melanoma cells   总被引:14,自引:0,他引:14  
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33(ING1) (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33(ING1) mediates UV-induced cell death in melanoma cells. We found that overexpression of p33(ING1) increased while the introduction of an antisense p33(ING1) plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33(ING1) required the presence of p53. Moreover, we found that p33(ING1) enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33(ING1) cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

9.
10.
Bcl-2 family proteins have been reported previously to play important roles in the mitochondrial apoptotic pathway. Particularly, Bmbuffy has been identified as a key homologue of Bcl-2 in silkworm; however, its exact function is unknown. In this study, we investigated the role of Bmbuffy in hydroxycamptothecine (HCPT)-induced apoptosis of BmN-SWU1 cells. By conducting confocal microscopy studies, we found that Bmbuffy is located on the outer membrane of mitochondria and endoplasmic reticulum (ER). Furthermore, we discovered that the hydrophobic transmembrane domain at the COOH terminus is a putative anchor for the subcellular localization of Bmbuffy. Overexpression of Bmbuffy inhibited cytochrome c release, activation of caspase-3 and cell apoptosis, while RNAi-mediated silencing of Bmbuffy promoted apoptosis. In the absence of a hydrophobic membrane anchor, we revealed that Bmbuffy is unable to block apoptosis. These results indicate that Bmbuffy acts as an anti-apoptotic protein, located on the mitochondrial outer membrane and is involved in the mitochondrial apoptotic pathway. Moreover, in HCPT-induced apoptosis, we showed that the translocation of endogenous Bmp53 from the nucleus to the mitochondria is a slow and progressive process, followed by cytochrome c release. This suggests that mitochondrial Bmp53 accumulation may contribute to membrane permeability. The co-localization of Bmp53 and Bmbuffy suggests the interaction of the two proteins, which was further confirmed by Co-IP assay. In addition, overexpression of Bmp53 increased cytochrome c release and the cell apoptotic rate, whereas Bmbuffy overexpression blocked these. All the data suggest that Bmbuffy functions as an anti-apoptotic protein and interacts with Bmp53 in HCPT-induced apoptosis of silkworm cells.  相似文献   

11.
12.
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.  相似文献   

13.
Phenylalanine analog, ρ-fluorophenylalanine (pFPhe)-mediated cytotoxicity and several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, Bid cleavage, degradation of PARP and PLCγ-1, and DNA fragmentation were more significant in p56lck-deficient Jurkat T cells (JCaM1.6) than in wild-type Jurkat T cells (E6.1). The susceptibility of JCaM1.6 toward apoptogenic activity of pFPhe decreased after acquisition of p56lck by transfection. The p56lck kinase activity increased 1.6-fold at 15-30 min after pFPhe treatment. The pan-caspase inhibitor (z-VAD-fmk) completely blocked the pFPhe-mediated apoptotic changes except caspase-9 activation. The caspase-8 inhibitor (z-IETD-fmk), which failed to influence pFPhe-induced caspase-9 activation, completely blocked caspase-8 activation and PLCγ-1 degradation with a marked reduction in caspase-3 activation and PARP degradation, indicating pFPhe-induced caspase-8 activation as a downstream event of mitochondria-dependent activation of caspase-9. These results indicate that the deficiency of p56lck augments pFPhe-induced mitochondrial cytochrome c release and resultant apoptotic cell death in Jurkat T cells.  相似文献   

14.
The Arf tumor suppressor gene product, p19Arf, regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19Arf also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19Arf. Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3′UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53—a well-known effector of p19ArfArf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19Arf and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.  相似文献   

15.
16.
17.
Recently, we have described that CREB (cAMP-responsive element-binding protein) has the ability to transactivate tumor suppressor p53 gene in response to glucose deprivation. In this study, we have found that CREB forms a complex with p53 and represses p53-mediated transactivation of MDM2 but not of p21WAF1. Immunoprecipitation analysis revealed that CREB interacts with p53 in response to glucose deprivation. Forced expression of CREB significantly attenuated the up-regulation of the endogenous MDM2 in response to p53. By contrast, the mutant form of CREB lacking DNA-binding domain (CREBΔ) had an undetectable effect on the expression level of the endogenous MDM2. During the glucose deprivation-mediated apoptosis, there existed an inverse relationship between the expression levels of MDM2 and p53/CREB. Additionally, p53/CREB complex was dissociated from MDM2 promoter in response to glucose deprivation. Collectively, our present results suggest that CREB preferentially down-regulates MDM2 and thereby contributing to p53-mediated apoptosis in response to glucose deprivation.  相似文献   

18.
19.
p53 is an important regulator of cell growth and apoptosis and its activity is regulated by phosphorylation. Accordingly, in neonatal rat cardiomyocytes we examined the involvement of p53 in H2O2-induced apoptosis. Treatment with 50–100 μM H2O2 markedly induced apoptosis in cardiomyocytes, as assessed by gel electrophoresis of genomic DNA. To examine whether H2O2 increases p53 phosphorylation in cardiomyocytes, we utilized an antibody that specifically recognizes phosphorylated p53 at serine-15. The level of phosphorylated p53 was markedly increased by 100 μM H2O2 at 30 and 60 min. Using specific protein kinase inhibitors we examined the involvement of protein kinases in p53 phosphorylation in response to H2O2 treatment. However, staurosporine, a broad spectrum inhibitor of protein kinases, SB202190, a specific p38 kinase inhibitor, PD98059, a MAP kinase inhibitor, wortmannin, an inhibitor of DNA-PK and PI3 kinase, SP600125, a JNK inhibitor and caffeine,an inhibitor of ATM and ATR, failed to prevent the H2O2-induced phosphorylation of p53. cDNA microarray revealed that H2O2 markedly increased expression of several p53 upstream modifiers such as the p300 coactivator protein and several downstream effectors such as gadd45, but decreased the expression of MDM2, a negative regulator of p53. Our results suggest that phosphorylation of p53 at serine-15 may be an important signaling event in the H2O2-mediated apoptotic process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号