首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
姜黄素(curcumin)诱导处理的人成骨肉瘤MG-63细胞,在光镜和电镜观察细胞凋亡的基础上,对hnRNP A2/B1在核基质中存在、分布及其与凋亡相关基因产物在MG-63细胞中的共定位关系进行了研究.经姜黄素处理后,细胞出现染色质凝聚、细胞核固缩、凋亡小体等典型的细胞凋亡形态特征;双向凝胶电泳和质谱鉴定结果显示,hnRNP A2/B1存在于MG-63细胞核基质蛋白组分中,在姜黄素处理后细胞核基质蛋白中表达下调.蛋白质印迹杂交结果,证实hnRNP A2/B1在姜黄素处理前后的MG-63细胞核基质蛋白中的存在及其表达下调变化.免疫荧光显微镜观察显示,hnRNP A2/B1定位于MG-63细胞核基质纤维上,经姜黄素处理后出现分布位置与表达水平变化.激光扫描共聚焦显微镜的观察结果显示,hnRNP A2/B1在MG-63细胞凋亡过程中与Bax、Bcl-2、Fas和p53等基因产物具有共定位关系,且其共定位区域发生了变化.研究结果证实了hnRNP A2/B1定位于核基质纤维上,是一种核基质蛋白,在姜黄素诱导人成骨肉瘤MG-63凋亡过程中的表达与分布变化及其与凋亡相关基因的关系显然对MG-63细胞凋亡具有重要影响,这为深入揭示肿瘤细胞凋亡的机制提供了重要科学依据和深入探索的新方向.  相似文献   

2.
应用选择性抽提、整装透射电镜观察和双向聚丙烯酰胺凝胶电泳与质谱鉴定技术研究细胞凋亡诱导物姜黄素处理前后人成骨肉瘤MG-63细胞核基质-中间纤维系统的构型变化.及其核基质蛋白表达的差异。经姜黄素处理后,MG-63细胞的核基质和中间纤维比对照组明显稀疏,且分布更加不均匀,并分别与核纤层连系,形成趋于断裂但相对还较为完整的网状结构:双向凝胶电泳分析显示在姜黄素诱导MG-63细胞凋亡前后存在27个差异表达的核基质蛋白.经质谱鉴定了其中的21个蛋白.在凋亡的MG-63细胞中表达上调的蛋白鉴定为:DNA聚合酶zeta等7种蛋白:表达下调的蛋白质为:Prohibitin等14种蛋白。其中首次在核基质中发现的蛋白质有17个。因此.在MG-63细胞凋亡过程中不仅其核基质-中间纤维系统构型产生了典型的的凋亡特征性变化.而且伴有核基质蛋白表达的差异。由此证实了与肿瘤细胞凋亡诱导相关特异核基质蛋白的存在及其对肿瘤细胞凋亡诱导的调控作用.从而对揭示核基质构型及其蛋白组成与细胞凋亡的关系和阐明细胞凋亡过程中的基因表达调控机理.均具有重要意义。  相似文献   

3.
核基质结合元件的结构特征   总被引:2,自引:1,他引:1  
核基质结合元件的结构特征何明亮(中国科学院上海生物化学研究所,上海200031)关键词核基质结合元件核基质又名核骨架,是细胞核内一种动态亚组分结构,在形态上为一种不溶的骨架网络,包括核纤层(lamina)、内层蛋白纤维颗粒、残留的核仁和核孔复合体。核...  相似文献   

4.
应用生化方法分离了棘尾虫细胞大核的核基质与核周层。电镜观察表明,分离的核基质与核周层结构都能保持大核的原有形态,它们是由纤维颗粒状的物质所组成。生化分析表明,大核核基质与核周层主要由蛋白质所组成,少量抗抽提的DNA和RNA主要是结合在核内基质结构上。  相似文献   

5.
核基质与基因表达调控研究进展   总被引:3,自引:0,他引:3  
Li GW  Wen BG 《生理科学进展》1998,29(3):257-259
核基质是细胞核内由一群复杂多样的非组蛋白构成的纤维网状结构。核基质蛋白具有明显的组织细胞特异性及肿瘤相关性。它作为细胞核的支架结构,在DNA的复制、转录、RNA加工修饰等重要的细胞内事件中起着支持和调节作用,并通过转录调节因子、核基质结合元件以及核基质蛋白与DNA的相互作用等多种途径参与基因的表达调控  相似文献   

6.
通过选择性抽提经环六亚甲基双乙酰胺(hexamethylene bisacetamide,HMBA)诱导处理前后的人肝癌SMMC-7721细胞核基质,并运用亚细胞蛋白质组学等分析技术,研究nucleophosmin (NPM)在核基质上的表达和定位变化,及其与相关基因产物的共定位关系,观察研究了nucleophosmin 在诱导分化前后人肝癌SMMC-7721细胞核基质中的存在、分布及其与相关基因产物的共定位关系.双向凝胶电泳和质谱鉴定结果显示,nucleophosmin 存在于 SMMC-7721 细胞核基质蛋白组分中,在 HMBA 处理后细胞核基质中表达下调.蛋白质印迹杂交实验结果确证了 nucleophosmin 在核基质中的存在及其在诱导处理后细胞核基质中表达下调的变化.免疫荧光显微镜观察显示,nucleophosmin 定位在 SMMC-7721细胞核基质上,经 HMBA处理后出现分布位置与表达水平的变化.激光扫描共聚焦显微镜观察结果显示,SMMC-7721细胞中,nucleophosmin与 c-fos、c-myc、rb、p53 等基因产物具有共定位关系,但在诱导处理后细胞内的共定位区域发生了改变.研究结果证实,nucleophosmin 是一种核基质蛋白,定位于核基质纤维上,nucleophosmin 在人肝癌 SMMC-7721 细胞诱导分化过程中的表达分布,及其与相关癌基因、抑癌基因产物的关系对 SMMC-7721 细胞分化具有重要影响.  相似文献   

7.
杜氏盐藻中的核基质与核基质结合区   总被引:6,自引:0,他引:6  
真核生物细胞核DNA通过核基质结合区(Matrix attachment region,MAR)附着到核基质上。为了进一步探索染色体DNA与核基质之间的相互作用,从单细胞真核藻类-杜氏盐藻中克隆出了MAR片段。首先构建了杜氏盐藻的随机MAR文库,通过体外结合实验分离出能与核基质结合的MAR序列。从构建的MAR文库中,筛选出3个能与核基质结合的MAR,其中两个片段与核基质具有较强的结合力,测序分析表明具有MAR片段的一些典型特征性基序。  相似文献   

8.
本文利用含有抗核基质自发抗体的硬皮人血清,以小鼠艾氏腹水癌细胞为材料,用间接免疫荧光染色的方法,追踪了对应核基质抗原在细胞周期中分布的变化。结果显示,在末期和间期之间存在一个核基质抗原从细胞质向细胞核内转移的过程。由于这一过程是通过核膜进行的,从而提示核基质结构可能有解聚和再聚合的行为。用酶化学结合间接免疫荧光染色的方法,初步研究了抗原的化学性质。染色形态的比较研究显示所用血清中可能含有不同于以前发现的、抗新的核基质抗原的自发抗体。  相似文献   

9.
免疫荧光染色结果说明植物细胞核内含有与抗动物NuMA多抗呈阳性交叉反应的多肽。选择性抽提并结合免疫荧光染色结果说明这种多肽位于核基质纤维蛋白网络上。免疫印迹反应显示胡萝卜(DaucuscarotaL.)悬浮培养细胞核基质蛋白与抗动物NuMA蛋白多抗的阳性反应条带为74kD和76kD。有丝分裂各期免疫荧光染色的结果表明植物细胞中的NuMA类似蛋白在有丝分裂过程中呈现有规律的变化。结合选择性抽提的有丝分裂各期的免疫荧光染色的结果表明核基质在此过程中也发生明显变化。应用选择性抽提并结合DGD包埋去包埋电镜技术对植物细胞间期及有丝分裂期核基质的形态结构进行了观察。结果显示胡萝卜悬浮培养细胞间期核内存在一个非染色质性的纤维蛋白网络体系,而在正处于分裂的细胞中则未观察到。以上结果说明NuMA类似蛋白是核基质的组分之一并与有丝分裂密切相关。  相似文献   

10.
分离鉴定多功能的核基质蛋白及核基质结合蛋白是目前核基质研究的一个重要领域。通过与转录因子、核基质结合元件以及DNA间相互作用,核基质结合蛋白在DNA复制、转录、加工修饰等细胞内事件中起着支持和调节的作用。多ADP-核糖聚合酶[poly(ADP—ribose)polymerase,PARP]是一种高度保守的核基质结合蛋白,在多种活动例如基因组损伤修复、细胞凋亡、信号转导、基因表达调控中都发挥着调节的功能。PARP的潜在生物学功能已越来越引起国内外研究人员的关注。  相似文献   

11.
Apoptotic cell death is characterized by deep morphological changes that take place in the nucleus. It is unclear whether modifications also occur in the nuclear matrix, a mainly proteinaceous structure that conceivably acts as a nuclear framework. We have investigated whether biochemical and morphological alterations of the nuclear matrix prepared from apoptotic HL‐60 cells were dependent on the manipulations to which isolated nuclei were subjected before DNase I digestion and 2 M NaCl extraction. Our results showed that the stabilizing procedures employed to preserve the inner fibrogranular network and nucleolar remnants of the matrix (i.e., a 37°C incubation; exposure to sodium tetrathionate at 4°C; exposure to sodium tetrathionate at 37°C) had no effect on the protein recovery of apoptotic nuclear matrices, which was always approximately two‐ to fivefold less than in control matrices. Moreover, one‐ and two‐dimensional gel analysis of nuclear matrix proteins showed that, in apoptotic samples, striking quantitative changes were present, as compared with controls. Once again, these changes were seen irrespective of the stabilizing procedures employed. Also, transmission electron microscope analysis showed similar morphological alterations in all types of apoptotic nuclear matrices. By contrast, the immunofluorescent distribution of the 240‐kDa NuMA protein seen in apoptotic samples was more sensitive to the stabilizing treatments. Our results indicate that the biochemical and morphological changes of the apoptotic nuclear matrix are largely independent of the isolation protocols and strengthen the contention that destruction of the nuclear matrix network is one of the key events leading to apoptotic nuclear destruction. J. Cell. Biochem. 74:99–110, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
Cancer is diagnosed by examining the architectural alterations to cells and tissues. Changes in nuclear structure are among the most universal of these and include increases in nuclear size, deformities in nuclear shape, and changes in the internal organization of the nucleus. These may all reflect changes in the nuclear matrix, a non-chromatin nuclear scaffolding determining nuclear form, higher order chromatin folding, and the spatial organization of nucleic acid metabolism. Malignancy-induced changes in this structure may have profound effects on chromatin folding, on the fidelity of genome replication, and on gene expression. Elucidating the mechanisms and the biological consequences of nuclear changes will require the identification of the major structural molecules of the internal nuclear matrix and an understanding of their assembly into structural elements. If biochemical correlates to malignant alterations in nuclear structure can be identified then nuclear matrix proteins and, perhaps nuclear matrix-associated structural RNAs, may be an attractive set of diagnostic markers and therapeutic targets. J. Cell. Biochem. 70:172–180, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Caspase-mediated proteolysis is a critical and central element of the apoptotic process, and caspase 3, one of the effector caspases, is proposed to play essential roles in the nuclear morphological changes of apoptotic cells. Although many substrates for caspase 3 localize in the nucleus and caspase 3 translocates from the cytoplasm to the nuclei after activation in apoptotic cells, the molecular mechanisms of nuclear translocation of active caspase 3 have been unclear. Recently, we suggested that a substrate-like protein(s) served as a carrier to transport caspase 3 from the cytoplasm into the nucleus. In the present study, we identified A-kinase-anchoring protein 95 (AKAP95) as a caspase 3-binding protein. Small interfering RNA-mediated depletion of AKAP95 reduced apoptotic nuclear morphological changes, suggesting that AKAP95 is involved in the process of apoptotic nuclear morphological changes. The association of AKAP95 with active caspase 3 was analogous to an enzyme-substrate interaction. Furthermore, overexpression of AKAP95 with nuclear localization sequence mutations inhibited nuclear morphological changes in apoptotic cells. These results indicate that AKAP95 is a potential carrier protein for active caspase 3 from the cytoplasm into the nuclei in apoptotic cells.  相似文献   

14.
Nuclear apoptotic changes: an overview   总被引:11,自引:0,他引:11  
Apoptosis is a form of active cell death essential for morphogenesis, development, differentiation, and homeostasis of multicellular organisms. The activation of genetically controlled specific pathways that are highly conserved during evolution results in the characteristic morphological features of apoptosis that are mainly evident in the nucleus. These include chromatin condensation, nuclear shrinkage, and the formation of apoptotic bodies. The morphological changes are the result of molecular alterations, such as DNA and RNA cleavage, post-translational modifications of nuclear proteins, and proteolysis of several polypeptides residing in the nucleus. During the last five years our understanding of the process of apoptosis has dramatically increased. However, the mechanisms that lead to apoptotic changes in the nucleus have been only partially clarified. Here, we shall review the most recent findings that may explain why the nucleus displays these striking modifications. Moreover, we shall take into consideration the emerging evidence about apoptotic events as a trigger for the generation of autoantibodies to nuclear components.  相似文献   

15.
JinML ZhanP 《Cell research》2001,11(2):125-134
INTRODUCTIIONThe nuclear matrix is an essential component ofthe nucleus which is important for the nuclear structural integrity and specific genomic functions[1, 2].Several articles have reported that the nuclear matrix, as a higher order framework structures, mightbe disassembled du-ring the apoptotic process[3-5].Accordingly3 nuclear lamins A/C or B have beenfound to decrease in apoptotic thymocytes[6], Tcells[7], and carcinoma cell line[8, 9]. The nucleolar protein B23, an obscure ma…  相似文献   

16.
The overall coordination of cell structure and function that results in gene expression requires a spatial and temporal precision that would be unobtainable in the absence of structural order within the cell. Cells contain extensive and elaborate three-dimensional skeletal networks that form integral structural components of the plasma membrane, cytoplasm, and nucleus. These skeletal networks form a dynamic tissue matrix are composed of the nuclear matrix, cytoskeleton, and extracellular matrix. The tissue matrix is an interactive network which undergoes dynamic changes as cells move and change shape. Pathologists have long recognized cancer in pathologic specimens based on the altered morphology of tumor cells compared to their normal counterparts. The structural order of cells appears to be altered in transformed cells. This structural order is reflected in the altered morphology and motility observed in transformed cells compared to their normal counterparts, however, it is unclear whether the structural changes observed in cancer cells have any functional significance. We report here on the nature of the physical connections between the nucleus and cell periphery in nontransformed cells and demonstrate that the nucleus is dynamically coupled to the cell periphery via actin microfilaments. We also demonstrate that the dynamic coupling of the nucleus to the cell periphery via actin microfilaments is altered in Kirsten-ras transformed rat kidney epithelial cells. This loss of structure-function relationship may be an important factor in the process of cell transformation.  相似文献   

17.
We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis.  相似文献   

18.
We have characterized the nuclear matrix-intermediate filament fraction from control and apoptotic HL-60 cells. Apoptosis was induced by exposure to the topoisomerase I inhibitor, camptothecin. By means of two-dimensional polyacrylamide gel electrophoresis, striking qualitative and quantitative differences were seen in the protein composition of the nuclear matrix-intermediate filament fraction obtained from apoptotic cells in comparison with controls. Western blotting analysis of apoptotic nuclear matrix proteins revealed degradation of some (topoisomerase IIalpha, SAF-A) but not other (SATB1 and nucleolin) components. Moreover, immunofluorescent staining for typical matrix antigens (NuMA protein, lamin B, SC-35) showed that in 35-40% of the structures prepared from apoptotic samples, marked changes in the subnuclear distribution of these proteins were present. Striking morphological differences between control and apoptotic samples were also detected at the ultrastructural level. These results demonstrate that both biochemical and morphological changes can be detected in the nuclear matrix prepared from apoptotic HL-60 cells.  相似文献   

19.
Structural changes of mitochondria related to apoptosis   总被引:6,自引:0,他引:6  
The original concept of apoptosis stressed the morphological changes of the nucleus, condensation with the aggregation of chromatin, and the intactness of intracellular organelles including mitochondria. However, the application of molecular biology and flow-cytometric techniques to the research field of apoptosis has led to the proposal of the apoptotic processes which emphasizes the 'swelling of mitochondria' due to the opening of the 'permeability transition pores' of the mitochondrial membranes followed by a series of events including the collapse of the transmembrane potential of mitochondria and release of cytochrome c from mitochondria into the cytosol. Enlargement of mitochondria induced by various pathological conditions are classified into two categories: the swelling and the formation of megamitochondria (MG). Recently, we have found that free radical-induced formation of MG is succeeded by apoptotic changes of the cell. If the MG formation is actually related to apoptosis, this will be a new aspect of the structural changes of mitochondria involved in apoptosis besides the simple swelling of mitochondria. First, we will discuss the 'swelling of mitochondria' which characterizes the currently accepted hypothesis on the apoptotic processes of the cell, as described above, in the light of the literature. Second, the mechanisms controlling the size and distribution of mitochondria in the cell are dealt with paying special attention to the genetic regulation and cytoskeletons. Third, we have tried to characterize the MG formation to correlate apoptotic changes of the cell. Finally, we will discuss several problems to be solved in the future which involve mitochondria in apoptotic processes of the cell.  相似文献   

20.
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm of interphase eukaryotic cells, and it mediates all trafficking between these 2 cellular compartments. As such, the NPC and nuclear transport play central roles in translocating death signals from the cell membrane to the nucleus where they initiate biochemical and morphological changes occurring during apoptosis. Recent findings suggest that the correlation between the NPC, nuclear transport, and apoptosis goes beyond the simple fact that NPCs mediate nuclear transport of key players involved in the cell death program. In this context, the accessibility of key regulators of apoptosis appears to be highly modulated by nuclear transport (e.g., impaired nuclear import might be an apoptotic trigger). In this review, recent findings concerning the unexpected tight link between NPCs, nuclear transport, and apoptosis will be presented and critically discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号