首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitivity to Yersinia pestis bacteriocin pesticin correlates with the existence of two groups of human pathogenic yersiniae, mouse lethal and mouse nonlethal. The presence of the outer membrane pesticin receptor (FyuA) in mouse-lethal yersiniae is a prerequisite for pesticin sensitivity. Genes that code for FyuA (fyuA) were identified and sequenced from pesticin-sensitive bacteria, including Y. enterocolitica biotype 1B (serotypes O8; O13, O20, and O21), Y. pseudotuberculosis serotype O1, Y. pestis, two known pesticin-sensitive Escherichia coli isolates (E. coli Phi and E. coli CA42), and two newly discovered pesticin-sensitive isolates, E. coli K49 and K235. A 2,318-bp fyuA sequence was shown to be highly conserved in all pesticin-sensitive bacteria, including E. coli strains (DNA sequence homology was 98.5 to 99.9%). The same degree of DNA homology (97.8 to 100%) was established for the sequenced 276-bp fragment of the irp2 gene that encodes high-molecular-weight protein 2, which is also thought to be involved in the expression of virulence by Yersinia species. Highly conserved irp2 was also found in all pesticin-sensitive E. coli strains. On the basis of the fyuA and irp2 sequence homologies, two evolutionary groups of highly pathogenic Yersinia species can be established. One group includes Y. enterocolitica biotype 1B strains, while the second includes Y. pestis, Y. pseudotuberculosis serotype O1, and irp2-positive Y. pseudotuberculosis serotype O3 strains. E. coli Phi, CA42, K49, and K235 belong to the second group. The possible proximity of these two iron-regulated genes (fyuA and irp2), as well as their high levels of sequence conservation and similar G+C contents (56.2 and 59.8 mol%), leads to the assumption that these two genes may represent part of an unstable pathogenicity island that has been acquired by pesticin-sensitive bacteria as a result of a horizontal transfer.  相似文献   

2.
Yersinia pestis, the causative agent of bubonic and pneumonic plagues, has undergone detailed study at the molecular level. To further investigate the genomic diversity among this group and to help characterize lineages of the plague organism that have no sequenced members, we present here the genomes of two isolates of the "classical" antiqua biovar, strains Antiqua and Nepal516. The genomes of Antiqua and Nepal516 are 4.7 Mb and 4.5 Mb and encode 4,138 and 3,956 open reading frames, respectively. Though both strains belong to one of the three classical biovars, they represent separate lineages defined by recent phylogenetic studies. We compare all five currently sequenced Y. pestis genomes and the corresponding features in Yersinia pseudotuberculosis. There are strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. We found 453 single nucleotide polymorphisms in protein-coding regions, which were used to assess the evolutionary relationships of these Y. pestis strains. Gene reduction analysis revealed that the gene deletion processes are under selective pressure, and many of the inactivations are probably related to the organism's interaction with its host environment. The results presented here clearly demonstrate the differences between the two biovar antiqua lineages and support the notion that grouping Y. pestis strains based strictly on the classical definition of biovars (predicated upon two biochemical assays) does not accurately reflect the phylogenetic relationships within this species. A comparison of four virulent Y. pestis strains with the human-avirulent strain 91001 provides further insight into the genetic basis of virulence to humans.  相似文献   

3.
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.  相似文献   

4.
The genetic analysis of Y. pestis virulence factors accomplished in the 358 strain isogenic system allowed us to determine a minimal set of known factors providing pathogenicity. The combination of chromosomal marker Pgm+ and calcium dependence plasmid (pCad) is shown to be sufficient for preserving the virulence of Y. pestis. Experimental modelling of virulence in this microorganism by the genetic exchange methods was carried out. The reduced virulence of the strains Pgm+ and pCad+ for guinea pigs was detected.  相似文献   

5.
Yersinia enterocolitica, an important food- and water-borne enteric pathogen, is represented by six biovars viz. 1A, 1B and 2-5. Some biovar 1A strains, despite lacking virulence plasmid (pYV) and chromosomal virulence genes, have been reported to cause symptoms similar to that produced by isolates belonging to known pathogenic biovars. Virulence-associated genes viz. ail, virF, inv, myfA, ystA, ystB, ystC, tccC, hreP, fepA, fepD, fes, ymoA and sat were studied in 81 clinical and nonclinical strains of Y. enterocolitica biovar 1A by PCR amplification. All strains lacked ail, virF, ystA and ystC genes. The distribution of other genes with respect to clonal groups revealed that four genes viz. ystB, hreP, myfA and sat were associated exclusively with strains belonging to clonal group A. The clonal groups A and B were differentiated previously based on rep (REP-/ERIC) - PCR genomic fingerprinting. The distribution of virulence-associated genes, however, did not differ significantly between clinical and nonclinical strains. In strains of Y. enterocolitica biovar 1A, clonal groups seem to reflect virulence potential better than the source (clinical vs. nonclinical) of isolation.  相似文献   

6.
Identification and cloning of a fur regulatory gene in Yersinia pestis.   总被引:22,自引:15,他引:22       下载免费PDF全文
Yersinia pestis is one of many microorganisms responding to environmental iron concentrations by regulating the synthesis of proteins and an iron transport system(s). In a number of bacteria, expression of iron uptake systems and other virulence determinants is controlled by the Fur regulatory protein. DNA hybridization analysis revealed that both pigmented and nonpigmented cells of Y. pestis possess a DNA locus homologous to the Escherichia coli fur gene. Introduction of a Fur-regulated beta-galactosidase reporter gene into Y. pestis KIM resulted in iron-responsive beta-galactosidase activity, indicating that Y. pestis KIM expresses a functional Fur regulatory protein. A cloned 1.9-kb ClaI fragment of Y. pestis chromosomal DNA hybridized specifically to the fur gene of E. coli. The coding region of the E. coli fur gene hybridized to a 1.1-kb region at one end of the cloned Y. pestis fragment. The failure of this clone to complement an E. coli fur mutant suggests that the 1.9-kb clone does not contain a functional promoter. Subcloning of this fragment into an inducible expression vector restored Fur regulation in an E. coli fur mutant. In addition, a larger 4.8-kb Y. pestis clone containing the putative promoter region complemented the Fur- phenotype. These results suggest that Y. pestis possesses a functional Fur regulatory protein capable of interacting with the E. coli Fur system. In Y. pestis Fur may regulate the expression of iron transport systems and other virulence factors in response to iron limitation in the environment. Possible candidates for Fur regulation in Y. pestis include genes involved in ferric iron transport as well as hemin, heme/hemopexin, heme/albumin, ferritin, hemoglobin, and hemoglobin/haptoglobin utilization.  相似文献   

7.
A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed.  相似文献   

8.
Escherichia coli K1 is the leading cause of human neonatal sepsis and meningitis and is important in other clinical syndromes of both humans and domestic animals; in this strain the polysialic acid capsule (K1 antigen) functions by inhibiting innate immunity. Recent discovery of the phase-variable capsular O acetylation mechanism indicated that the O-acetyltransferase gene, neuO, is carried on a putative K1-specific prophage designated CUS-3 (E. L. Deszo, S. M. Steenbergen, D. I. Freedberg, and E. R. Vimr, Proc. Natl. Acad. Sci. USA 102:5564-5569, 2005). Here we describe the isolation and characterization of a CUS-3 derivative (CUS-3a), demonstrating its morphology, lysogenization of a sensitive host, and the distribution of CUS-3 among a collection of 111 different K1 strains. The 40,207-bp CUS-3 genome was annotated from the strain RS218 genomic DNA sequence, indicating that most of the 63 phage open reading frames have their closest homologues in one of seven different lambdoid phages. Translational fusion of a reporter lacZ fragment to the hypervariable poly-Psi domain facilitated measurement of phase variation frequencies, indicating no significant differences between switch rates or effects on rates of the methyl-directed mismatch repair system. PCR analysis of poly-Psi domain length indicated preferential loss or gain of single 5'-AAGACTC-3' nucleotide repeats. Analysis of a K1 strain previously reported as "locked on" indicated a poly-Psi region with the least number of heptad repeats compatible with in-frame neuO expression. The combined results establish CUS-3 as an active mobile contingency locus in E. coli K1, indicating its capacity to mediate population-wide capsule variation.  相似文献   

9.
Zhou D  Tong Z  Song Y  Han Y  Pei D  Pang X  Zhai J  Li M  Cui B  Qi Z  Jin L  Dai R  Du Z  Wang J  Guo Z  Wang J  Huang P  Yang R 《Journal of bacteriology》2004,186(15):5147-5152
Yersinia pestis has been historically divided into three biovars: antiqua, mediaevalis, and orientalis. On the basis of this study, strains from Microtus-related plague foci are proposed to constitute a new biovar, microtus. Based on the ability to ferment glycerol and arabinose and to reduce nitrate, Y. pestis strains can be assigned to one of four biovars: antiqua (glycerol positive, arabinose positive, and nitrate positive), mediaevalis (glycerol positive, arabinose positive, and nitrate negative), orientalis (glycerol negative, arabinose positive, and nitrate positive), and microtus (glycerol positive, arabinose negative, and nitrate negative). A 93-bp in-frame deletion in glpD gene results in the glycerol-negative characteristic of biovar orientalis strains. Two kinds of point mutations in the napA gene may cause the nitrate reduction-negative characteristic in biovars mediaevalis and microtus, respectively. A 122-bp frameshift deletion in the araC gene may lead to the arabinose-negative phenotype of biovar microtus strains. Biovar microtus strains have a unique genomic profile of gene loss and pseudogene distribution, which most likely accounts for the human attenuation of this new biovar. Focused, hypothesis-based investigations on these specific genes will help delineate the determinants that enable this deadly pathogen to be virulent to humans and give insight into the evolution of Y. pestis and plague pathogenesis. Moreover, there may be the implications for development of biovar microtus strains as a potential vaccine.  相似文献   

10.
Plasmid and chromosomal genes encode determinants of virulence for Yersinia pestis, the causative agent of plague. However, in vitro, Y. pestis genome is very plastic and several changes have been described. To evaluate the alterations in the plasmid content of the cultures in vitro and the impact of the alterations to their pathogenicity, three Y. pestis isolates were submitted to serial subculture, analysis of the plasmid content, and testing for the presence of characteristic genes in each plasmid of colonies selected after subculture. Different results were obtained with each strain. The plasmid content of one of them was shown to be stable; no apparent alteration was produced through 32 subcultures. In the other two strains, several alterations were observed. LD50 in mice of the parental strains and the derived cultures with different plasmid content were compared. No changes in the virulence plasmid content could be specifically correlated with changes in the LD50.  相似文献   

11.
Most plant pathogenic Agrobacterium strains have been classified into three biovars, "biovar 1 (A. tumefaciens; Rhizobium radiobacter), biovar 2 (A. rhizogenes; R. rhizogenes) and biovar 3 (A. vitis; R. vitis)". The bacteria possess diverse types of genomic organization depending on the biovar. Previous genomic physical maps indicated difference in location of rDNA and chromosomally-coded virulence genes between biovar 1 and 2 genomes. In order to understand biovar 3 genome and its evolution in relation to the biovar 1, 2 and 3 genomes, we constructed physical map of a pathogenic biovar 3 strain K-Ag-1 in this study. Its genome consisted of two circular chromosomes (3.6 and 1.1 Mbp in length), and three plasmids (560, 230 and 70 kbp). Gene mapping based on the physical map showed presence of two rDNA loci in the larger chromosome and at least one rDNA locus in the smaller chromosome. Six chromosomal virulence genes, namely chvA, chvD, chvE, glgP, exoC and ros were found in the larger chromosome and not in the smaller chromosome. The location of rDNA loci is similar with that of biovar 1 genome, whereas the location of chromosomal virulence genes is similar with that of biovar 2 genome despite of the closer 16S-rRNA based phylogenetic relation of biovar 3 with biovar 1 than with biovar 2. Genomic PFGE RFLP analysis revealed that the K-Ag-1 strain, which was isolated on a kiwifruit plant in Japan, has the closest intra-species relation with two strains isolated from grapevine plants in Japan among eight biovar 3 strains examined. This datum suggests that the line of the strain is a major one in biovar 3 in Japan. Evolution of the genome of the strain is discussed based on the data.  相似文献   

12.
The major virulence factor of the neuroinvasive pathogen Escherichia coli K1 is the K1 capsule composed of α2,8-linked polysialic acid (polySia). K1 strains harboring the CUS-3 prophage modify their capsular polysaccharide by phase-variable O-acetylation, a step that is associated with increased virulence. Here we present the crystal structure of the prophage-encoded polysialate O-acetyltransferase NeuO. The homotrimeric enzyme belongs to the left-handed β-helix (LβH) family of acyltransferases and is characterized by an unusual funnel-shaped outline. Comparison with other members of the LβH family allowed the identification of active site residues and proposal of a catalytic mechanism and highlighted structural characteristics of polySia specific O-acetyltransferases. As a unique feature of NeuO, the enzymatic activity linearly increases with the length of the N-terminal poly-ψ-domain which is composed of a variable number of tandem copies of an RLKTQDS heptad. Since the poly-ψ-domain was not resolved in the crystal structure it is assumed to be unfolded in the apo-enzyme.  相似文献   

13.
Yersinia pestis, the plague bacillus, has an exceptional pathogenicity but the factors responsible for its extreme virulence are still unknown. A genome comparison with its less virulent ancestor Yersinia pseudotuberculosis identified a few Y. pestis-specific regions acquired after their divergence. One of them potentially encodes a prophage (YpfPhi), similar to filamentous phages associated with virulence in other pathogens. We show here that YpfPhi forms filamentous phage particles infectious for other Y. pestis isolates. Although it was previously suggested that YpfPhi is restricted to the Orientalis branch, our results indicate that it was acquired by the Y. pestis ancestor. In Antiqua and Medievalis strains, YpfPhi genome forms an unstable episome whereas in Orientalis isolates it is stably integrated as tandem repeats. Deletion of the YpfPhi genome does not affect Y. pestis ability to colonize and block the flea proventriculus, but results in an alteration of Y. pestis pathogenicity in mice. Our results show that transformation of Y. pestis from a classical enteropathogen to the highly virulent plague bacillus was accompanied by the acquisition of an unstable filamentous phage. Continued maintenance of YpfPhi despite its high in vitro instability suggests that it confers selective advantages to Y. pestis under natural conditions.  相似文献   

14.
Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.  相似文献   

15.
The nucleotide sequences of the Tc's insect toxin complex genes have been analyzed in 18 natural strains of the main and non-main subspecies of Yersinia pestis isolated in different natural foci in the Russian Federation, as well as neighboring and more remote countries, as compared to the data on Y. pestis and Y. pseudotuberculosis strains stored in the NCBI GenBank database. The nucleotide sequences of these genes in plague agent strains have been found to be highly conserved, in contrast to those of the pseudotuberculosis agent. The sequences of two genes, tcaC and tccC2, have been found to be almost identical in Y. pestis strains, whereas other three genes (tcaA, tcaB, and tccC1) contain a few mutations, which, however, are not common for all strains of the plague agent. Exceptions are only strains of the Y. pestis biovar orientalis, whose tcaB gene is in a nonfunctional state due to a nucleotide deletion. The results suggest that the formation of the species Y. pestis as an agent of a natural focal infection with a transmissive mechanism has not resulted in degradation of the Tc's complex genes. Instead, these genes are likely to have been altered as the plague agent have been adapting to the new environment.  相似文献   

16.
The lytic activity of plague phage II, serovar 3, with respect to 1,800 bacterial strains has been studied: 760 Yersinia pestis strains, 262 Y. pseudotuberculosis strains, 252 Y. enterocolitica strains, 166 Escherichia coli strains, 90 Shigella strains and 270 strains of other species. The phage has been found to lyse 81.8% of Y. pestis strains, 1 Y. pseudotuberculosis strain and 1 Y. enterocolitica strain. The representatives of other 19 bacterial species have proved to be resistant to the phage. Though having a wide range of action within Y. pestis, the phage does not lyse most of the strains of the causative agent of plague, isolated in certain natural foci. This fact offers promise for using the phage for the differentiation of Y. pestis.  相似文献   

17.
The authors compared the activity of acetyl-CoA-synthetase and of the enzymes belonging to the group of asparaginic acid in levomycetin sensitive and resistant strains of Y. pestis and E. coli. There were revealed marked differences in the activity of aspartase, fumarase, synthetase and desamidase of L-asparagin, and also of the enzyme activated by acetate in the E. coli strains with plasmide resistance. Transmission of R-factor to the pestis was accompanied by decomposition of L-asparadein, formation of AC-CoA. At the same time transformation of L-asparaginic acid catalyzed by aspartase remained on the same low level in the sensitive pestis cultures and their variants with the R-factor. When the resistance was controlled by chromosomal resistance markers, the activity of the enzymes providing formation of L-asparagic acid, its amide and L-malic acid showed no significant change. In chromosomal type of resistance in the mutants of pestis and E. coli the acetyl-CoA-synthetase reaction was as a rule somewhat increased.  相似文献   

18.
为观察环介导等温扩增(loop-mediated isothermal amplification,LAMP)技术能否适用于我国不同疫源地鼠疫耶尔森菌所有基因组型的检测,本研究建立了一种基于3a靶序列设计特异性引物快速检测鼠疫耶尔森菌的LAMP方法.选择分离自我国11个鼠疫自然疫源地的65株野生代表性鼠疫耶尔森菌株,同...  相似文献   

19.

Background  

Yersinia enterocolitica, an important food- and water-borne enteric pathogen is represented by six biovars viz. 1A, 1B, 2, 3, 4 and 5. Despite the lack of recognized virulence determinants, some biovar 1A strains have been reported to produce disease symptoms resembling that produced by known pathogenic biovars (1B, 2-5). It is therefore imperative to identify determinants that might contribute to the pathogeniCity of Y. enterocolitica biovar 1A strains. Y. enterocolitica invariably produces urease and the role of this enzyme in the virulence of biovar 1B and biovar 4 strains has been reported recently. The objective of this work was to study genetic organization of the urease (ure) gene complex of Y. enterocolitica biovar 1A, biochemical characterization of the urease, and the survival of these strains under acidic conditions in vitro.  相似文献   

20.
External guide sequences (EGSs) targeting virulence genes from Yersinia pestis were designed and tested in vitro and in vivo in Escherichia coli. Linear EGSs and M1 RNA-linked EGSs were designed for the yscN and yscS genes that are involved in type III secretion in Y. pestis. RNase P from E. coli cleaves the messages of yscN and yscS in vitro with the cognate EGSs, and the expression of the EGSs resulted in the reduction of the levels of these messages of the virulence genes when those genes were expressed in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号