首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is known that most of the plasma proteinase inhibitors form complexes with proteinases that are not dissociated by SDS (sodium dodecyl sulphate), there has been disagreement as to whether this is true for alpha 2M (alpha 2-macroglobulin). We have examined the stability to SDS with reduction of complexes between alpha 2M and several 125I-labelled proteinases (trypsin, plasmin, leucocyte elastase, pancreatic elastase and papain) by gel electrophoresis. For each enzyme, some molecules were separated from the denatured alpha 2M chains, but amounts ranging from 8.3% (papain) to 61.2% (trypsin) were bound with a stability indicative of a covalent link. Proteolytic activity was essential for the covalent binding to occur, and the proteinase molecules became attached to the larger of the two proteolytic derivatives (apparent mol.wt. 111 000) of the alpha 2M subunit. We take this to mean that cleavage of the proteinase-susceptible site sometimes leads to covalent-bond formation between alpha 2M and proteinase. Whatever the nature of this bond, it does not involve the active site of the proteinase, as bound serine-proteinase molecules retain the ability to react with the active-site-directed reagent [3H]Dip-F (di-isopropyl phosphorofluoridate). Our conclusion is that the ability to form covalent links is not essential for the inhibitory capacity of alpha 2M. It may, however, help to stabilize the complexes against dissociation or proteolysis.  相似文献   

2.
The interaction alpha 2-macroglobulin with four proteinases has been investigated by binding assays and by gel electrophoresis. At pH 7.65 the binding ratios of the proteinase-alpha 2-macroglobulin complexes were found to be 2:1 (trypsin and papain), 1.4:1 (chymotrypsin), and 1:1 (plasmin). The progressive decrease in the stoichiometry of the three seryl proteinase complexes was paralleled by a concomitant decrease in the proteinase-dependent specific cleavage of the alpha 2-macroglobulin peptide chains. Rate studies have shown that the relative rates of reaction of the proteinases with alpha 2-macroglobulin also varied greatly: papain greater than trypsin greater than chymotrypsin greater than plasmin. The data suggest that the ability of a proteinase to saturate the second proteinase binding site is a reflection of its ability to bind to alpha 2-macroglobulin and cleave the second pair of scissile alpha 2-macroglobulin peptide bonds before the alpha 2-macroglobulin has undergone the conformational change initiated by the formation of the 1:1 proteinase alpha 2-macroglobulin complex.  相似文献   

3.
Human alpha 2-macroglobulin can be reversibly dissociated by Cd2+ at low ionic strength in half-molecules which retain their ability to bind tightly plasmin and chymotrypsin. The steady state kinetic parameters of these proteinases towards chromogenic substrates when bound to half-molecules are not greatly different from those determined for these enzymes linked to whole alpha 2M molecules. Cd2+ can also induce the dissociation of plasmin- and chymotrypsin - alpha 2M complexes into proteinase-alpha 2M half-molecule conjugates. These results, taken with the fact that monomeric units of alpha 2M cannot bind these proteinases, strongly suggest that each active site of alpha 2M consists in a specific arrangement of two monomeric units linked by disulfide bridges.  相似文献   

4.
Human alpha 2-macroglobulin (alpha 2M), a large tetrameric plasma glycoprotein, inhibits a wide spectrum of proteinases by a particular "trapping" mechanism resulting from the proteolysis of peptide bonds at specific "bait" regions. This induces the hydrolysis of four thiol esters triggering both the possible covalent bonding of the proteinases and a considerable structural change in the alpha 2M molecule, also observed following direct cleavage of the thiol esters by methylamine. By subtracting average images of electron micrographs from two populations of alpha 2M molecules in the same biochemical state (with both the four cleaved bait regions and thiol esters), but containing either two or zero chymotrypsins, we are able to demonstrate the position of the two proteinases inside the tetrameric alpha 2M molecule. The comparison of the alpha 2M molecules transformed either by immobilized chymotrypsin or methylamine shows that the proteolysis of the bait regions seems of minimal importance for the general shape of the molecule and provides a direct visualization of the actual role of the thiol esters in the conformational change.  相似文献   

5.
P A Roche  S V Pizzo 《Biochemistry》1987,26(2):486-491
When human alpha 2-macroglobulin (alpha 2M) binds proteinases, it undergoes subunit cleavage. Binding of small proteinases such as trypsin results in proteolysis of each of the four subunits of the inhibitor. By contrast, previous studies suggest that reaction of plasmin with alpha 2M results in cleavage of only two or three of the inhibitor subunits. In this paper, we demonstrate that the extent of subunit cleavage of alpha 2M is a function of plasmin concentration. When alpha 2M was incubated with a 2.5-fold excess of plasmin, half of the subunits were cleaved; however, at a 20-fold enzyme to inhibitor ratio, greater than 90% of the subunits were cleaved with no additional plasmin binding. This increased cleavage was catalyzed by free rather than bound plasmin. It is concluded that this "nonproductive" subunit cleavage is dependent upon the molar ratio of proteinase to inhibitor. The consequence of complete subunit cleavage on receptor recognition of alpha 2M-plasmin (alpha 2M-Pm) complexes was studied. Preparations of alpha 2M-Pm with only two cleaved subunits bound to the murine macrophage receptor with a Kd of 0.4 nM and 60 fmol of bound complex/mg of cell protein. When preparations of alpha 2-M-Pm with four cleaved subunits were studied, the Kd was unaltered but ligand binding increased to 140 fmol/mg of cell protein. The receptor binding behavior of the latter preparation is equivalent to that observed when alpha 2M is treated with small proteinases such as trypsin. This study suggests that receptor recognition site exposure is not complete in the alpha 2M-Pm complex with half of the subunits cleaved. Proteolytic cleavage of the remaining subunits of the inhibitor results in a further conformational change exposing the remaining receptor recognition sites.  相似文献   

6.
The reaction of alpha 2-macroglobulin (alpha 2M) with the two-chain enzyme plasma kallikrein results in covalent bond formation between the catalytic subunit and the inhibitor. We have recently published a model of alpha 2M which suggests that this phenomenon may be a general mechanism when multisubunit proteinases are inactivated by alpha 2M. In order to test this hypothesis, we studied the reactions of factor Xa, plasmin, streptokinase-plasmin and alpha-thrombin with alpha 2M. In the case of factor Xa the catalytic heavy chain demonstrated greater than 99% covalent incorporation while over 97% of the light chain failed to crosslink to the inhibitor. Preferential binding of the catalytic light chains of plasmin (70% covalent incorporation) and plasmin in complex with streptokinase (79% covalent incorporation) was also observed. Finally, 82% covalent incorporation of the catalytic heavy chain of alpha-thrombin was found. These studies demonstrate that in the case of multisubunit proteinases, the chain containing the active site demonstrates preferential binding as predicted by the model supporting placement of the site of covalent binding close to the "bait region" of alpha 2M.  相似文献   

7.
alpha 2-Antiplasmin Enschede is a variant of alpha 2-antiplasmin which has lost its ability to inhibit plasmin irreversibly and which is associated with a haemorrhagic disorder [Kluft et al. (1987) J. Clin. Invest. 80, 1391-1400]. The abnormal protein was purified from the plasma of a homozygous patient and subjected to one-dimensional peptide mapping using papain for digestion. A slightly abnormally migrating polypeptide (Mr 17,000) was found which represented the C-terminal part of the molecule (the N-terminus of the polypeptide corresponded to Gly-338 in normal alpha 2-antiplasmin) and which contained the reactive centre. The interaction of plasmin with alpha 2-antiplasmin Enschede was studied by adding plasmin to plasma of the homozygous patient. SDS/polyacrylamide-gel electrophoresis and immunoblotting showed that no complex persisted, but that the abnormal alpha 2-antiplasmin was cleaved into two fragments of Mr 56,000 and 14,000 respectively. The latter fragment co-migrated with the post-complex peptide, which is cleaved from normal alpha 2-antiplasmin during complex-formation with plasmin. In a purified system, catalytic amounts of plasmin rapidly cleaved alpha 2-antiplasmin Enschede into the aforementioned fragments. In kinetic studies alpha 2-antiplasmin Enschede reversibly and temporarily inhibited the plasmin-catalysed hydrolysis of D-valyl-L-leucyl-L-lysine p-nitroanilide ('S-2251') as a competitive inhibitor (Ki,app. 35 nM). It was concluded that alpha 2-antiplasmin Enschede apparently forms a normal complex with plasmin. The complex is, however, not stable, but disintegrates rapidly to a cleaved form of alpha 2-antiplasmin Enschede and active plasmin. The abnormal protein thus behaves like a substrate, instead of an inhibitor, of plasmin.  相似文献   

8.
The structures of the two proteinase-binding sites in human alpha 2-macroglobulin (alpha 2M) were probed by treatment of alpha 2M with the serine proteinases thrombin and plasmin. Each proteinase forms an equimolar complex with alpha 2M (a binary alpha 2M-proteinase complex) which results in the activation and cleavage of two internal thiolester bonds in alpha 2M. Binary alpha 2M-proteinase complexes demonstrated an incomplete conformational change as determined by nondenaturing polyacrylamide gel electrophoresis and incomplete receptor recognition site exposure as determined by in vivo plasma elimination studies. Treatment of binary alpha 2M-proteinase complexes with CH3NH2, trypsin, or elastase resulted in cleavage of an additional one or two thiolester bonds in alpha 2M and complete receptor recognition site exposure, demonstrating that a limited conformational change had occurred. Treatment of the alpha 2M-thrombin complex with elastase resulted in the incorporation of approximately 0.5 mol proteinase/mol alpha 2M and completion of the conformational change in the complex. Similar treatment of the alpha 2M-plasmin complex resulted in the incorporation of less than 0.1 mol proteinase/mol alpha 2M. Unlike the alpha 2M-thrombin complex, the alpha 2M-plasmin complex did not undergo a complete conformational change following treatment with CH3NH2 or trypsin. Incubation of this complex with elastase resulted in proteolysis of the kringle 1-4 region of the alpha 2M-bound plasmin heavy chain, and following this treatment the alpha 2M-plasmin complex underwent a complete conformational change. The results of this investigation demonstrate that binary alpha 2M-proteinase complexes retain a relatively intact proteinase-binding site. In the case of the alpha 2M-plasmin complex, however, the heavy chain of alpha 2M-bound plasmin protrudes from the proteinase-binding site and prevents a complete conformational change in the complex despite additional thiolester bond cleavage.  相似文献   

9.
Comparative x-ray scattering experiments and electron microscopic observations have been performed on native S-form, and on different F-forms of human plasma alpha 2-macroglobulin (alpha 2M), obtained by proteinase (chymotrypsin, plasmin, and thrombin) or methylamine treatment. Image processing of electron micrographs of the alpha 2M molecules transformed by chymotrypsin, plasmin, and methylamine displayed average images which could be compared. The proteinase-complex alpha 2M molecules exhibited the usual H-like structure, but the methylamine-inactivated ones showed a different organization, with almost no stain-excluding material in the central region of the molecule, which therefore presented a central cavity filled with stain. By subtracting average images of alpha 2M-methylamine from alpha 2M-chymotrypsin or alpha 2M-plasmin, a putative localization of the proteinases inside the alpha 2M molecule, very close to its center was revealed. The values of the radii of gyration for the S- and F-forms obtained by x-ray scattering were very different (78 and 67.7 A, respectively). All four scattering curves of the F-forms were comparable in shape and showed maxima and minima different from that of the S-form alpha 2M. Image processing of electron micrographs and x-ray scattering have provided independent results which indicate that a large cavity exists in the alpha 2M-methylamine molecule and that the proteinases might be located in a very central position inside the alpha 2M-proteinase molecules.  相似文献   

10.
It is shown that non-proteolytic proteins can become covalently linked to alpha 2M (alpha 2-macroglobulin) during its reaction with proteinases, and that this probably occurs by the mechanism that leads to the covalent linking of proteinases described previously [Salvesen & Barrett (1980) Biochem. J. 187, 695-701]. The covalent linking of trypsin was at least partly dependent on the presence of unblocked lysine side chains on the protein. The covalent linking of proteinases was inhibited by nucleophiles of low Mr, and these compounds were themselves linked to alpha 2M in a molar ratio approaching one per quarter subunit. Peptide "mapping" indicated that the site of proteinase-mediated incorporation of the amines was the same as that at which methylamine is incorporated in the absence of a proteinase. The nucleophile-reactive site revealed in alpha 2M after reaction with a proteinase was shown to decay with a t1/2 of 112 s, at pH 7.5. After the reaction with a proteinase or with methylamine, a free thiol group was detectable on each subunit of alpha 2M. We propose that the site for incorporation of methylamine in each subunit is a thiol ester, which in S-alpha 2M (the electrophoretically "slow" form) is sterically shielded from reaction with large nucleophiles, but is revealed as a highly reactive group, free from steric hindrance, after the proteolytic cleavage. We have designated the activated species of the molecule "alpha 2M".  相似文献   

11.
The inhibitory capacity of the alpha-macroglobulins resides in their ability to entrap proteinase molecules and thereby hinder the access of high molecular weight substrates to the proteinase active site. This ability is thought to require at least two alpha-macroglobulin subunits, yet the monomeric alpha-macroglobulin rat alpha 1-inhibitor-3 (alpha 1I3) also inhibits proteinases. We have compared the inhibitory activity of alpha 1I3 with the tetrameric human homolog alpha 2-macroglobulin (alpha 2M), the best known alpha-macroglobulin, in order to determine whether these inhibitors share a common mechanism. alpha 1I3, like human alpha 2M, prevented a wide variety of proteinases from hydrolyzing a high molecular weight substrate but allowed hydrolysis of small substrates. In contrast to human alpha 2M, however, the binding and inhibition of proteinases was dependent on the ability of alpha 1I3 to form covalent cross-links to proteinase lysine residues. Low concentrations of proteinase caused a small amount of dimerization of alpha 1I3, but no difference in inhibition or receptor binding was detected between purified dimers or monomers. Kininogen domains of 22 and 64 kDa were allowed to react with alpha 1I3- or alpha 2M-bound papain to probe the accessibility of the active site of this proteinase. alpha 2M-bound papain was completely protected from reaction with these domains, whereas alpha 1I3-bound papain reacted with them but with affinities several times weaker than uncomplexed papain. Cathepsin G and papain antisera reacted very poorly with the enzymes when they were bound by alpha 1I3, but the protection provided by human alpha 2M was slightly better than the protection offered by the monomeric rat alpha 1I3. Our data indicate that the inhibitory unit of alpha 1I3 is a monomer and that this protein, like the multimeric alpha-macroglobulins, inhibits proteinases by steric hindrance. However, binding of proteinases by alpha 1I3 is dependent on covalent crosslinks, and bound proteinases are more accessible, and therefore less well inhibited, than when bound by the tetrameric homolog alpha 2M. Oligomerization of alpha-macroglobulin subunits during the evolution of this protein family has seemingly resulted in a more efficient inhibitor, and we speculate that alpha 1I3 is analogous to an evolutionary precursor of the tetrameric members of the family exemplified by human alpha 2M.  相似文献   

12.
A proteinase inhibitor which has strong anti-collagenase activity was found in chicken egg white. The inhibitor (pI = 4.9) was purified by poly(ethylene glycol) (5.5-10%) precipitation and chromatography on Ultrogel AcA 34, DEAE-cellulose, and Sephacryl S-300. The final product was homogeneous on 5% polyacrylamide gel electrophoresis. Stoichiometric inhibition was observed with the inhibitor and rabbit synovial collagenase and thermolysin (1:1 molar ratio with thermolysin). The inhibitor ran on sodium dodecyl sulfate-gel electrophoresis with reduction as a single protein band of Mr = 165,000. The molecular weight of the native inhibitor was estimated to be 780,000 by sedimentation equilibrium centrifugation. Centrifugation analysis in 6 M guanidine hydrochloride and of the reduced sample gave M omega = 380,000 and M omega = 195,000, respectively, where M omega is the weight-average molecular weight determined by equilibrium ultra-centrifugation. The results indicated that the inhibitor molecule is a tetramer of identical subunits linked in pairs by disulfide bonds. Since the molecular weight and the quaternary structure of the inhibitor were similar to those of alpha 2-macroglobulin (alpha 2M) in plasma, chicken alpha 2M was isolated and compared with the inhibitor. The inhibitor was not sensitive to methylamine, whereas chicken alpha 2M was. No immunocross-reactivity was observed between the inhibitor and chicken alpha 2M. The NH2-terminal sequence of the egg white inhibitor is Lys-Glu-Pro-Glu-Pro-Gln-Tyr-Val-Leu-Met-Val-Pro-Ala. The sequence of chicken alpha 2M is Ser-Thr-Val-Thr-Glu-Pro-Gln-Tyr-Met-Val-Leu-Leu-Pro-Phe. Considerable homology was found between the two sequences and to the NH2-terminal sequence of human alpha 2M. Monospecific antibody raised against the egg white inhibitor was employed to examine the tissue distribution of the inhibitor. The inhibitor was found only in oviduct and egg white, but not in other tissues or serum of chickens.  相似文献   

13.
Hedgehog plasma was separated by gel filtration on Sephacryl S-200, the fractions resolved by electrophoresis and the electrophoretograms characterized for collagenase, papain and plasmin inhibiting activities with the high mol. wt substrate casein. The three inhibitors previously identified as alpha 2-, alpha 2-beta- and beta-macroglobulins were found to inhibit all three proteases. These were the only collagenase inhibitors found in plasma. Hedgehog alpha 2-chymotrypsin inhibitor and beta-protease inhibitor were both found to also inhibit papain. Three new inhibitors specific for papain (gamma-, alpha 2- and alpha 1-cysteine protease inhibitors) and one for plasmin (alpha 2-antiplasmin) were also found, bringing the number of protease inhibitors in hedgehog plasma to 14. Immunological cross-reactivity as studied by immunoelectrophoresis showed homology between hedgehog alpha 2-macroglobulin and rat murinoglobulin I and between hedgehog alpha 2-antithrombin and rat antithrombin III.  相似文献   

14.
The plasma clearance of neutrophil elastase, plasmin, and their complexes with human inter-alpha-trypsin inhibitor (I alpha I) was examined in mice, and the distribution of the proteinases among the plasma proteinase inhibitors was quantified in mixtures of purified inhibitors, in human or murine plasma, and in murine plasma following injection of purified proteins. The results demonstrate that I alpha I acts as a shuttle by transferring proteinases to other plasma proteinase inhibitors for clearance, and that I alpha I modulates the distribution of proteinase among inhibitors. The clearance of I alpha I-elastase involved transfer of proteinase to alpha 2-macroglobulin and alpha 1-proteinase inhibitor. The partition of elastase between these inhibitors was altered by I alpha I to favor formation of alpha 2-macroglobulin-elastase complexes. The clearance of I alpha I-plasmin involved transfer of plasmin to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Results of distribution studies suggest that plasmin binds to endothelium in vivo and reacts with I alpha I before transfer to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Evidence for this sequence of events includes observations that plasmin in complex with I alpha I cleared faster than free plasmin, that plasma obtained after injection of plasmin contained a complex identified as I alpha I-plasmin, and that a murine I alpha I-plasmin complex remained intact following injection into mice. Plasmin initially in complex with I alpha I more readily associated with alpha 2-plasmin inhibitor than did free plasmin.  相似文献   

15.
Characterization of the precursor form of type VI collagen   总被引:10,自引:0,他引:10  
Well characterized monospecific antisera against pepsin-extracted bovine type VI collagen were used to identify and characterize the intact form of type VI collagen. In immunoblotting experiments the antisera reacted with the pepsin-resistant fragments of the alpha 1(VI) and alpha 3(VI) chains, but not with the fragment of the alpha 2(VI) chain. Extracts obtained from uterus and aorta with 6 M guanidine HCl contained two immunoreactive polypeptides of Mr = 190,000 and 180,000 based on globular protein standards. Cleavage of extracts with pepsin generated the previously characterized pepsin-resistant fragments of alpha 1(VI) and alpha 3(VI), indicating that the higher molecular weight polypeptides represent the intact parent chains, alpha 1(VI) and alpha 3(VI). Digestion of extracts with bacterial collagenase released an Mr = 100,000 noncollagenous fragment from the alpha 1(VI) chain. Thus, intact type VI collagen in tissues contains a relatively short triple helical domain and at least one very large globular domain which is sensitive to pepsin but resistant to collagenase digestion. Immunoblotting revealed a polypeptide of Mr = 240,000, which we suggest represents the pro-alpha 1(VI) chain, in the culture medium of bovine fibroblasts. Bands intermediate in molecular weight between 240,000 and 190,000 were identified in cell layers. These findings establish type VI collagen as a protein with very large nontriple helical domains, a property that undoubtedly plays an important role in its function.  相似文献   

16.
The complete amino acid sequence of the inhibitor of cysteine proteinases from pineapple stem acetone powder was determined. The inhibitor consists of 52 amino acids and is composed of two polypeptide chains (41 and 11 amino acids) linked via disulphide bonds. It differs from already known sequences in one to four amino acids. Data from its amino acid sequence analysis clearly show that this inhibitor cannot be a member of the cystatin superfamily. The Ki values for papain, bromelain and cathepsin L were determined.  相似文献   

17.
The antiproteinase activities against trypsin, chymotrypsin, elastase, papain and rat leucocyte proteinases were determined in plasma from control and Morris hepatoma-bearing rats. Bovine trypsin and chymotrypsin were similarly inhibited by the two types of plasma whereas porcine pancreatic elastase, papain and rat leucocyte neutral proteinases were more efficiently inhibited by plasma from tumour-bearing rats. The increased plasma concentrations of some proteinase inhibitors, as determined by rocket immunoelectrophoresis, are suggested to be responsible for the observed differences in inhibition. The highest increases in plasma of tumour-bearing rats were observed for alpha 2-macroglobulin and alpha 1-acute-phase globulin. The synthesis and secretion of six proteinase inhibitors: antithrombin III, alpha 1-proteinase inhibitor, alpha 1-macroglobulin, alpha 2-macroglobulin, alpha 1-acute-phase globulin and haptoglobin, as well as albumin, were measured in tissue slices from rat liver and Morris hepatoma after incubation with [14C]leucine. Local inflammation inflicted upon the tumour-bearing rats increased formation of acute-phase proteins in liver slices but not in hepatoma slices.  相似文献   

18.
SDS-polyacrylamide gel electrophoresis of a recently prepared alpha 2-macroglobulin solution showed only the polypeptide chains of 190,000 molecular weight. Reduction-alkylation of this preparation followed by gel-filtration on a Sephadex G-200 column in 5.2 M guanidine hydrochloride was unable to separate a fraction of 83,000 molecular weight as previously described. Nevertheless, after incubation of a mixture alpha 2-macroglobulin-trypsin during 45 minutes at 37 degrees C, approximately 60 per cent of the preparation were converted in a component with 83,000 molecular weight as detected in SDS polyacrylamide gel. That component was isolated on Sephadex G-200 in guanidine hydrochloride and corresponds to the subunit, fraction II. According to the results of the present work together with those of previous studies, it can be assumed that alpha 2-MG is a 780,000 molecular weight protein (19S) formed of two half-molecules of equal weight (11-12S). The half-molecule contains two polypeptide chains of 180,000-190,000 molecular weight, each of them having, in its middle, a specific region particularly susceptible to attack by proteases.  相似文献   

19.
Human alpha 2-macroglobulin is a tetrameric plasma inhibitor of proteinases. Its dissociation by Cd2+ gives functional dimers. Electron microscopy of negatively stained dimers shows their round-ended cylindrical shape with furrows delimiting 3 main stain-excluding domains. Image processing of electron micrographs shows the existence of 2 main orientations of the dimers on the carbon support film. The dimer is composed of 2 curved monomers linked in a central domain, and related by a 90 degree rotation. Taking into account the known primary structure of alpha 2-macroglobulin and the linkage of the 2 constitutive monomers by 2 disulfide bonds, the molecular organization of the dimer is discussed, extended to the tetrameric molecule and compared to the published models of human alpha 2-macroglobulin.  相似文献   

20.
A monoclonal antibody was obtained from the fusion of spleen cells of mice, immunized with methylamine-treated alpha 2-macroglobulin (alpha 2M), with the myeloma cell line P3-X63-Ag8.653. A competitive binding assay demonstrated that the antibody was specific for a neoantigen expressed on alpha 2M when the inhibitor reacts with proteinases or with methylamine. When immobilized, the monoclonal antibody retained its ability to specifically bind alpha 2M-proteinase complexes or methylamine-treated alpha 2M, both of which could be quantitatively recovered from the immunoaffinity column by lowering the pH to 5.0. Binary alpha 2M-proteinase complexes of trypsin, plasmin, and thrombin, prepared by incubating large amounts of alpha 2M with a small amount of enzyme, were isolated by immunoaffinity chromatography. Each purified complex was characterized with regard to proteinase content, extent of alpha 2M subunit cleavage, extent of thiol ester hydrolysis, and extent of conformational change. Each complex contained 0.8-0.9 mol of proteinase/mol of inhibitor. In the alpha 2M-thrombin, alpha 2M-plasmin, and alpha 2M-trypsin complexes, approximately 50%, 60%, and 75% of the subunits are cleaved, respectively. Titration of sulfhydryl groups revealed that all purified binary complexes contained 2 +/- 0.5 mol of thiol/mol of complex, suggesting that each complex retains two intact thiol ester bonds. When the purified complexes were incubated with excess trypsin or with methylamine, an additional 1-2 mol of sulfhydryl/mol of complex could be titrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号