首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comitin (p24) was first identified in Dictyostelium discoideum as a membrane-associated protein which binds in gel overlay assays to G and F actin. To analyze its actin-binding properties we used purified, bacterially expressed comitin and found that it binds to F actin in spin down experiments and increases the viscosity of F actin solutions even under high-salt conditions. Immunofluorescence studies, cell fractionation experiments and EM studies of vesicles precipitated with comitin-specific monoclonal antibodies showed that comitin was present in D. discoideum on: (a) a perinuclear structure with tubular or fibrillary extensions; and (b) on vesicles distributed throughout the cell. In immunofluorescence experiments using comitin antibodies NIH 3T3 fibroblasts showed a similar staining pattern as D. discoideum cells. Using bona fide Golgi markers the perinuclear structure was identified as the Golgi apparatus. The results were supported by an electron microscopic study using cryosections. Based on these data we propose that also in Dictyostelium the stained perinuclear structure is the Golgi apparatus. In vivo the perinuclear structure was found to be attached to the actin and the microtubule network. Alteration of the actin network or depolymerization of the microtubules led to its dispersal into vesicles distributed throughout the cell. These results suggest that the Golgi apparatus in D. discoideum is connected to the actin network by comitin. This protein seems also to be present in mammalian cells.  相似文献   

2.
Comitin is an F-actin binding and membrane-associated protein from Dictyostelium discoideum, which is present on Golgi and vesicle membranes and changes its localization in response to agents affecting the cytoskeleton. To investigate its in vivo functions we have generated knockout mutants by gene replacement. Based on comitin's in vitro functions we examined properties related to vesicular transport and microfilament function. Whereas cell growth, pinocytosis, secretion, chemotaxis, motility, and development were unaltered, comitin-lacking cells were impaired in the early steps of phagocytosis of Saccharomyces cerevisiae particles and of Escherichia coli, whereas uptake of latex beads was unaffected. Furthermore, the lack of comitin positively affected survival of pathogenic bacteria. Mutant cells also showed an altered response to hyperosmotic shock in comparison to the wild type. The redistribution of comitin during hyperosmotic shock in wild-type cells and its presence on early phagosomes suggest a direct involvement of comitin in these processes.  相似文献   

3.
The N-terminal core domain of comitin from the slime mold Dictyostelium discoideum has been modelled from the X-ray coordinates of the monocot mannose-binding lectin from snowdrop (Galanthus nivalis). Docking experiments performed on the three-dimensional model showed that two of the three mannose-binding sites of the comitin monomer are functional. They are located at both ends of the comitin dimer whereas the actin-interacting region occurs in the central hinge region where both monomers are non covalently associated. This distribution is fully consistent with the bifunctional character of comitin which is believed to link the Golgi vesicles exhibiting mannosylated membrane glycans to the actin cytoskeleton in the cell.  相似文献   

4.
Polyclonal antibodies made against Dictyostelium discoideum membranes were used to block the interaction of those membranes with actin. As expected, actin interacted mostly with the internal surface of the membrane, demonstrated by the fact that whole cells could only absorb out a minor fraction of the blocking antibody. The antibody was used to show that the membrane component(s) which interacted with actin were probably integral; they could be extracted with detergent but not with solutions designed to extract peripheral membrane proteins. To identify the responsible protein(s), Western transfers of membranes were cut into fractions which were tested for their ability to absorb out the blocking activity of the antibody. We observed a single peak at a molecular weight of approximately 20,000, and thus conclude that a 20,000-mol-wt protein is a major integral membrane actin-binding protein in Dictyostelium. This approach to the identification of proteins involved in actin-membrane interaction has allowed us to make the first identification of an actin-binding membrane protein which is based on its activity in native membranes.  相似文献   

5.
The small GTP-binding protein ADP-ribosylation factor (ARF) has been shown to regulate the interaction of actin and actin-binding proteins with the Golgi apparatus. Here we report that ARF activation stimulates the assembly of distinct pools of actin on Golgi membranes. One pool of actin cofractionates with coatomer (COPI)- coated vesicles and is sensitive to salt extraction and the plus end actin-binding toxin cytochalasin D. A second ARF-dependent actin pool remains on the Golgi membranes following vesicle extraction and is insensitive to cytochalasin D. Isolation of the salt-extractable ARF-dependent actin from the Golgi reveals that it is bound to a distinct repertoire of actin-binding proteins. The two abundant actin-binding proteins of the ARF-dependent actin complex are identified as spectrin and drebrin. We show that drebrin is a specific component of the cytochalasin D-sensitive, ARF-dependent actin pool on the Golgi. Finally, we show that depolymerization of this actin pool with cytochalasin D increases the extent of the salt-dependent release of COPI-coated vesicles from the Golgi following cell-free budding reactions. Together these data suggest that regulation of the actin-based cytoskeleton may play an important role during ARF-mediated transport vesicle assembly or release on the Golgi.  相似文献   

6.
Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane.  相似文献   

7.
The binding of caldesmon and its actin-binding fragments to actin was studied by using peptide antibodies directed against two actin sites implicated in actomyosin interactions. Antibodies against residues 1-7 on skeletal alpha-actin strongly inhibited the binding of caldesmon to actin and perturbed to a smaller extent the interaction between actin and the actin binding fragments. Carbodiimide coupling of ethylenediamine to the NH2-terminal acidic residues on actin inhibited the binding of caldesmon and its fragments to actin to a similar extent as the (residues 1-7) antibodies. Antibodies against residues 18-28 showed only limited competition with caldesmon for the binding to actin. These results lead to the following conclusions. (i) The NH2-terminal residues on actin play an important role in the binding of caldesmon to actin, (ii) residues 18-28 on actin do not form a major caldesmon interaction site, and (iii) the actin-binding fragments do not contain the full actin-binding interface. These conclusions and other literature data suggest that caldesmon regulates the actomyosin ATPase by competing with myosin.ATP for the NH2-terminal segment on actin.  相似文献   

8.
The actin cytoskeleton is implicated in many cellular processes, such as cell adhesion, locomotion, contraction and cytokinesis, which are central to any development. The extent of polymerization, cross-linking, and bundling of actin is regulated by several actin-binding proteins. Knock-out mutations in these proteins have revealed in many cases only subtle, if any, defects in development, suggesting that the actin system is redundant, with multiple proteins sharing overlapping functions. The apparent redundancy may, however, reflect limitations of available laboratory assays in assessing the developmental role of a given protein. By using a novel assay, which reproduces conditions closer to the natural ones, we have re-examined the effects of disruption of many actin-binding proteins, and show here that deletion of alpha-actinin, interaptin, synexin, 34-kDa actin-bundling protein, and gelation factor affect to varying degrees the efficiency of Dictyostelium cells to complete development and form viable spores. No phenotypic defects were found in hisactophilin or comitin null mutants.  相似文献   

9.
Ponticulin is a 17,000-dalton transmembrane glycoprotein that is involved in the binding and nucleation of actin filaments by Dictyostelium discoideum plasma membranes. The major actin-binding protein isolated from these membranes by F-actin affinity chromatography, ponticulin also binds F-actin on blot overlays. The actin-binding activity of ponticulin in vitro is identical to that observed for purified plasma membranes: it resists extraction with 0.1 N NaOH, is sensitive to high salt concentrations, and is destroyed by heat, proteolysis, and thiol reduction and alkylation. A cytoplasmic domain of ponticulin mediates binding to actin because univalent antibody fragments directed against the cytoplasmic surface of this protein inhibit 96% of the actin-membrane binding in sedimentation assays. Antibody specific for ponticulin removes both ponticulin and the ability to reconstitute actin nucleation activity from detergent extracts of solubilized plasma membranes. Levels of plasma membrane ponticulin increase 2- to 3-fold during aggregation streaming, when cells adhere to each other and are highly motile. Although present throughout the plasma membrane, ponticulin is preferentially localized to some actin-rich membrane structures, including sites of cell-cell adhesion and arched regions of the plasma membrane reminiscent of the early stages of pseudopod formation. Ponticulin also is present but not obviously enriched at phagocytic cups of log-phase amebae. These results indicate that ponticulin may function in vivo to attach and nucleate actin filaments at the cytoplasmic surface of the plasma membrane. A 17,000-dalton analogue of ponticulin has been identified in human polymorphonuclear leukocyte plasma membranes by immunoblotting and immunofluorescence microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1- pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre- activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.  相似文献   

11.
Indirect immunofluorescence localization of ponticulin in motile cells   总被引:6,自引:0,他引:6  
Ponticulin is the major actin-binding integral glycoprotein in plasma membranes isolated from log-phase Dictyostelium discoideum amebae. As such, this protein appears to be an important link between the plasma membrane and actin filaments (Wuestehube and Luna: Journal of Cell Biology 105:1741-1751, 1987). In this study, indirect immunofluorescence microscopy was used to examine the distribution of ponticulin in randomly moving D. discoideum amebae and in amebae engaged in cell migration and phagocytosis. Ponticulin is distributed throughout the plasma membrane and also is present in intracellular vesicles associated with the microtubule-organizing center-Golgi complex adjacent to the nucleus. In aggregating amebae, ponticulin is concentrated in regions of lateral cell-cell contact and in arched regions of the plasma membrane. Ponticulin also is present, but not obviously enriched, in filopodia, in the actin-rich anterior end of polarized cells, and in detergent-insoluble cytoskeletons. In amebae engaged in phagocytosis of yeast, ponticulin is present but not enriched in phagocytic cups and is associated with intracellular vesicles around engulfed yeast. These results suggest that ponticulin is stably associated with actin filaments in certain regions of the plasma membrane and that the actin-binding activity of ponticulin may be tightly controlled. Indirect immunofluorescence microscopy and immunoblot analysis demonstrate that human polymorphonuclear leukocytes also contain a 17 kD protein that specifically cross-reacts with antibodies affinity-purified against D. discoideum ponticulin. As in D. discoideum, the mammalian 17 kD ponticulin-analog appears to be localized in plasma membrane and is evident in actin-rich cell extensions. These results indicate that ponticulin-mediated linkages between the plasma membrane and actin may be present in higher eukaryotic cells.  相似文献   

12.
Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.  相似文献   

13.
Lim RW  Furukawa R  Fechheimer M 《Biochemistry》1999,38(49):16323-16332
Intramolecular interaction within the Ca(2+)-regulated 34 kDa actin-bundling protein from Dictyostelium discoideum was found to contribute to the regulation of its actin-binding activity. Recombinant N-terminally truncated proteins aa77-295, 124-295, and 139-295 bound actin at > or = 2:1 stoichiometry, which is 5-fold greater than the intact protein aa1-295 as assessed by cosedimentation with F-actin. These proteins also have enhanced cross-linking activity as assessed by viscometry and electron microscopy. All truncated 34 kDa proteins failed to bind (45)Ca(2+) on blots and displayed Ca(2+)-insensitive binding with actin, although most proteins possessed intact putative EF-hand Ca(2+)-binding motifs. An intramolecular interaction within the 34 kDa protein was inferred from direct demonstrations of domain-domain interaction among the truncated 34 kDa proteins both in the presence and absence of actin. The intramolecular interaction between interaction zone 1 (aa71-123) and interaction zone 2 (aa193-254) is proposed to maintain the N-terminal inhibitory region (aa1-76) in close proximity with the strong actin-binding site (aa193-254) in order to modulate the interaction of the intact protein with actin filaments.  相似文献   

14.
Huang H  Schroeder F  Zeng C  Estes MK  Schoer JK  Ball JM 《Biochemistry》2001,40(13):4169-4180
The rotavirus enterotoxin, NSP4, is a novel secretory agonist that also plays a role in the unique rotavirus morphogenesis that involves a transient budding of newly made immature viral particles into the endoplasmic reticulum. NSP4 and an active peptide corresponding to NSP4 residues 114 to 135 (NSP4(114-135)) mobilize intracellular calcium and induce secretory chloride currents when added exogenously to intestinal cells or mucosa. Membrane-NSP4 interactions may contribute to these alterations; however, details of a lipid-binding domain are unresolved. Therefore, circular dichroism was used to determine (i) the interaction(s) of NSP4 and NSP4(114-135) with model membranes, (ii) the conformational changes elicited in NSP4 upon interacting with membranes, (iii) if NSP4(114-135) is a membrane interacting domain, and (iv) the molar dissociation constant (K(d)) of NSP4(114-135) with defined lipid vesicles. Circular dichroism revealed for the first time that NSP4 and NSP4(114-135) undergo secondary structural changes upon interaction with membrane vesicles. This interaction was highly dependent on both the membrane surface curvature and the lipid composition. NSP4 and NSP4(114-135) preferentially interacted with highly curved, small unilamellar vesicle membranes (SUV), but significantly less with low-curvature, large unilamellar vesicle membranes (LUV). Binding to SUV, but not LUV, was greatly enhanced by negatively charged phospholipids. Increasing the SUV cholesterol content, concomitant with the presence of negatively charged phospholipids, further potentiated the interaction of NSP4(114-135) with the SUV membrane. The K(d) of NSP4(114-135) was determined as well as partitioning of NSP4(114-135) with SUVs in a filtration-binding assay. These data confirmed NSP4 and its active peptide interact with model membranes that mimic caveolae.  相似文献   

15.
Cofilin and destrin are two related low molecular weight mammalian actin-binding proteins. Cofilin is an F-actin side-binding and pH-dependent actin-depolymerizing protein, and destrin is a pH-independent actin-depolymerizing protein. We have introduced a few point mutations within an actin-binding sequence of cofilin. Biochemical analyses of these mutant proteins have clearly shown that Lys112 and Lys114 of cofilin are crucially but differently involved in its interaction with actin and phosphatidylinositol 4,5-bisphosphate. This is the first example among actin-binding proteins whose point mutations inactivate their interaction with actin in vitro. We have also made and characterized a series of chimeric proteins between cofilin and destrin to identify the regions responsible for the pH dependence and the F-actin side binding activity of cofilin. Our results suggest that a central region consisting of 42 amino acid residues and a carboxyl-terminal quarter of cofilin are both involved in regulation of the pH-dependent actin depolymerizing activity and the activity to bind along F-actin.  相似文献   

16.
The heterodimeric actin-capping protein (CP) can be inhibited by polyphosphoinositides, which may be important for actin polymerization at membranes in cells. Here, we have identified a conserved set of basic residues on the surface of CP that are important for the interaction with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Computational docking studies predicted the identity of residues involved in this interaction, and functional and physical assays with site-directed mutants of CP confirmed the prediction. The PIP(2) binding site overlaps with the more important of the two known actin-binding sites of CP. Correspondingly, we observed that loss of PIP(2) binding correlated with loss of actin binding among the mutants. Using TIRF (total internal reflection fluorescence) microscopy, we observed that PIP(2) rapidly converted capped actin filaments to a growing state, consistent with uncapping. Together, these results extend our understanding of how CP binds to the barbed end of the actin filament, and they support the idea that CP can "wobble" when bound to the barbed end solely by the C-terminal "tentacle" of its beta-subunit.  相似文献   

17.
The interaction with actin and intracellular localization of the 30,000-D actin-binding protein from the cellular slime mold Dictyostelium discoideum have been investigated to analyze the potential contributions of this protein to cell structure and movement. The formation of anisotropic cross-linked filament networks (bundles) containing actin and the 30,000-D protein has been observed by electron microscopy, light scattering, viscometry, and polarization microscopy. Cosedimentation experiments indicate that a maximum of one molecule of the 30,000-D protein can bind to 10 actin monomers in filaments with an apparent association constant of 1 X 10(7) liters/mol. Inhibition of the interaction of the 30,000-D protein with actin by either magnesium or calcium was observed by viscometry, light scattering, polarization microscopy, and direct binding assays. However, the concentration of magnesium required to diminish the interaction is greater than 100 times greater than that of calcium. The association constant of the 30,000-D protein for actin is 4.2 X 10(6) liters/mol, or less than 1 X 10(5) liters/mol in the presence of increased concentrations of either Mg2+ or Ca2+, respectively. Enzyme-linked immunoassays indicate that the 30,000-D protein comprises 0.04% of the protein in D. discoideum. Extensive interaction of the 30,000-D protein with actin in cytoplasm is predicted from these measurements of the concentration of this protein and its affinity for actin. The distribution of the 30,000-D protein was analyzed by immunofluorescence microscopy using mono-specific affinity-purified polyclonal antibody. The 30,000-D protein exhibits a diffuse distribution in cytoplasm, is excluded from prominent organelles, and is quite prominent in fine extensions protruding from the cell surface. The number, length, and distribution of these extensions containing the 30,000-D protein are similar to those of filopodia observed by scanning electron microscopy. To analyze the effects of cell thickness and the distribution of organelles on the immunofluorescence localization, fluorescein-labeled BSA was incorporated into the cytoplasm of living cells before fixation and staining using a sonication loading technique. The results indicate that the 30,000-D protein is selectively incorporated into filopodia. These results provide a clear distinction between the multiple actin-cross-linking proteins present in D. discoideum, and suggest that the 30,000-D protein contributes to organization of bundles of actin filaments in filopodia.  相似文献   

18.
Cytoskeletal dynamics are important for efficient function of the secretory pathway. ADP-ribosylation factor, ARF1, triggers vesicle coat assembly and, in concert with Cdc42, regulates actin polymerization and molecular motor-based motility. Drebrin and mammalian Abp1 (mAbp1) are actin-binding proteins found previously to bind to Golgi membranes in an ARF1-dependent manner in vitro. Despite sharing homology through two shared actin binding domains, drebrin and mAbp1 have different subcellular localization and bind to distinct actin structures on the Golgi apparatus. We find that the actin-depolymerizing factor homology (ADFH) and charged/helical actin binding domains of drebrin and mAbp1 are sufficient for regulated binding to Golgi membranes and subcellular localization. We have used mutant proteins and chimeras between mAbp1 and drebrin to identify motifs that direct targeting. We find that a linker region between the ADFH and charged/helical domains confers Golgi binding properties to mAbp1. mAbp1 binds to a specific actin pool through its ADFH/linker domain that is not bound by drebrin. Drebrin localization to the cell surface was found to involve motifs within the charged/helical domain. Our results indicate that targeting of these proteins is directed through multiple distinct interactions with the actin cytoskeleton. The mechanisms for selective recruitment of mAbp1 and drebrin to Golgi membranes indicate how actin-based structures are able to select specific actin-binding proteins and, thus, carry out multiple different functions within cells.  相似文献   

19.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

20.
Plasma membranes from normal rat livers and rat liver tumors were compared by SDS-gel electrophoresis, and analyzed for actin-binding proteins by an 125I-labelled actin gel-overlay assay and by actin-affinity blotting. After treatment of rats with alpha-hexachlorocyclohexane and after induction of liver tumors by combined treatment with N-nitrosomorpholine and phenobarbital, liver plasma membranes prepared from these animals were found to be highly enriched in an actin-binding, 50 kDa polypeptide. This polypeptide seemed to be an integral protein of the plasma membrane as judged by Triton X-114-phase separation. Microsomes did not contain an actin-binding polypeptide in the 50 kDa region. Therefore, the 50 kDa protein is a candidate for interaction of actin with the liver cell plasma membrane. A possible relationship of this protein with the multi-specific, cholate transporting system of the rat liver plasma membrane is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号