首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One class of the nuclear receptor AF-2 coactivator complexes contains the SRC-1/TIF2 family, CBP/p300 and an RNA coactivator, SRA. We identified a subfamily of RNA-binding DEAD-box proteins (p72/p68) as a human estrogen receptor alpha (hER alpha) coactivator in the complex containing these factors. p72/p68 interacted with both the AD2 of any SRC-1/TIF2 family protein and the hER alpha A/B domain, but not with any other nuclear receptor tested. p72/p68, TIF2 (SRC-1) and SRA were co-immunoprecipitated with estrogen-bound hER alpha in MCF7 cells and in partially purified complexes associated with hER alpha from HeLa nuclear extracts. Estrogen induced co-localization of p72 with hER alpha and TIF2 in the nucleus. The presence of p72/p68 potentiated the estrogen-induced expression of the endogenous pS2 gene in MCF7 cells. In a transient expression assay, a combination of p72/p68 with SRA and one TIF2 brought an ultimate synergism to the estrogen-induced transactivation of hER alpha. These findings indicate that p72/p68 acts as an ER subtype-selective coactivator through ER alpha AF-1 by associating with the coactivator complex to bind its AF-2 through direct binding with SRA and the SRC-1/TIF2 family proteins.  相似文献   

2.
3.
Colley SM  Iyer KR  Leedman PJ 《IUBMB life》2008,60(3):159-164
Nuclear receptor (NR) coregulators are key modulators of hormone signaling. Discovery of steroid receptor RNA activator (SRA), a coregulator that is active as a RNA, transformed thinking in the field of hormone action. The subsequent identification of SRA-binding coregulator proteins, including p68, SHARP and more recently SLIRP, has provided important insight into SRA's mechanism of action and potentially offers new opportunities to target NR signaling pathways for therapeutic gain. Here we outline advances in the field of NR coregulator biology, with a bias on recent progress in understanding SRA-protein interactions.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Estrogen receptor (ER) function is mediated by multi-domain co-regulator proteins. A fluorescently labelled fragment of the human PGC-1alpha co-regulator (residues 91-408) bearing the two motifs most strongly implicated in interactions with nuclear receptors (NR box2 and NR box3), was used to characterize in vitro binding of PGC-1alpha to ER. Anisotropy measurements revealed that the affinity of this PGC-1alpha fragment for human ERalpha and beta was fairly strong in the presence of estradiol (approximately 5 nM), and that unlike a similar fragment of SRC-1 (570-780), PGC-191-408 exhibited ligand-independent interactions with ER, particularly with ERbeta (Kd approximately 30 nM). Competition experiments of the complex between ERalpha and fluorescently labelled PGC-1 91-408 with unlabelled SRC-1 570-780 showed that PGC-1 91-408 was an efficient competitor of SRC-1 570-780, while the inverse was not true, underscoring their distinct modes of binding. The anisotropy data provide strong evidence for a ternary complex between ERalpha, SRC-1 570-780 and PGC-1 91-408. GST-pull-down experiments with deletion mutants of ERalpha revealed that the constitutive binding of PGC-1 91-408 requires the presence of the linker domain between the DNA binding and ligand binding domains (DBD and LBD). Homology modeling studies of the different regions of full length PGC-1alpha confirmed the lack of compact tertiary structure of the N-terminal region bearing the NR box motifs, and suggested a slightly different mode of interaction compared to the NR box motifs of SRC-1. They also provided reasonable structural models for the coiled-coil dimerization motif at residues 633-675, as well as the C-terminal putative RNA binding domain, raising important questions concerning the stoichiometry of its complex with the nuclear receptors.  相似文献   

15.
16.
The SWI3-related gene product (SRG3), a component of the mouse SWI/SNF complex, has been suggested to have an alternative function. Here, we demonstrate that in the prostate transactivation of the androgen receptor (AR) is modulated by SRG3 in multiple ways. The expression of SRG3, which is developmentally regulated in the prostate, is induced by androgen through AR. SRG3 in turn enhances the transactivation of AR, providing a positive feedback regulatory loop. The SRG3 coactivation of AR transactivation is achieved through the recruitment of coactivator SRC-1, the protein level of which is upregulated by SRG3, providing another pathway of positive regulation. Interestingly, SRG3 coactivation of AR transactivation is fully functional in BRG1/BRM-deficient C33A cells and the AR/SRG3/SRC-1 complex formed in vivo contains neither BRG1 nor BRM protein, suggesting the possibility of an SRG3 function independent of the SWI/SNF complex. Importantly, the AR/SRG3/SRC-1 complex occupies androgen response elements on the endogenous SRG3 and PSA promoter in an androgen-dependent manner in mouse prostate and LNCaP cells, respectively, inducing gene expression. These results suggest that the multiple positive regulatory mechanisms of AR transactivation by SRG3 may be important for the rapid proliferation of prostate cells during prostate development and regeneration.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号