首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Levels of basal chitin synthetase in cell-free extracts from Phycomyces blakesleeanus were reduced by breakage of cells in the presence of EDTA or EGTA. Addition of Ca2+ to these extracts activated chitin synthetase. Maximal activation was obtained after 2 h at a Ca2+ concentration of 2–5 mM. Activation by calcium was not reduced by any protease inhibitor tested but benzamidine, whereas the weak proteolytic activity of the extracts was inhibited by antipain. Larger levels of chitin synthetase activation were obtained by the simultaneous addition of calcium and calmodulin in most, but not all extracts. This further activation by calmodulin was prevented by TFP. ATP or cAMP did not stimulate activation by calcium or calcium-calmodulin.Abbreviations EGTA ethylene glycol-bis(B-aminoethylether)-N,NN-tetraacetic acid - GlcNAc N-acetyl-d-glucosamine - PMSF phenylmethylsulfonyl fluoride - SBTI soybean trypsin inhibitor - TFP trifluoperazine - TLCK N-p-tosyl-l-lysine choromethyl ketone - UDPGlcNAc uridine diphosphate N-acetyl-d-glucosamine  相似文献   

2.
Under diurnal 16/8-h light-dark cycles, ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) at 1 mM completely blocked the appearance of rhythmic N2-fixing activity in Synechococcus RF-1. Ca2+ at 2 mM, when supplied either together with or several hours after the EGTA application, restored the nitrogenase activity, whereas, when Ca2+ was supplied several hours later, the peak of nitrogenase activity was shifted from the dark to the light period in which the activity is normally suppressed. Sr2+ also reversed the inhibition by EGTA, but only partially. When O2 in the gas phase above the culture was below 1%, the inhibition of nitrogenase activity by EGTA was reduced to less than 20% of the control value without EGTA. Thus Ca2+ appears to be required by the cell to protect its nitrogenase from inactivation by O2. In media without EGTA, a close correlation between nitrogenase activity and concentrations of Ca2+ was also observed.Abbreviation EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid  相似文献   

3.
Summary Kinetics of growth and nitrogenase induction inFrankia sp. Ar13 were studied in batch culture. Growth on defined medium with NH 4 + as the N source displayed typical batch culture kinetics; however, a short stationary phase was followed by autolysis. Removal of NH 4 + arrested growth and initiated vesicle differentiation. Vesicle numbers increased linearly and were paralleled by a rise in nitrogenase (acetylene reduction) activity. Nitrogenase activity (10 nM C2H4·mg protein–1·min–1) was sufficient to support growth on N2 and protein levels rose in parallel with nitrogenase induction. Optimal conditions for vesicle and nitrogenase induction were investigated. Maximum rates of acetylene reduction were obtained with 5 to 10 mM K2 HPO4/KH2PO4, 0.1 mM CaCl2 and MgSO4. The optimum pH for acetylene reduction and respiration was around 6.7. The amount (5 to 10 g protein/ml) and stage (exponential) of growth of the ammonium-grown inoculum strongly influenced the subsequent development of nitrogenase activity. Propionate was the most effective carbon source tested for nitrogenase induction. Respiration in propionate-grown cells was stimulated by CO2 and biotin, suggesting that propionate is metabolized via the propionyl CoA pathway.  相似文献   

4.
Incubation of Azotobacter chroococcum in the presence of micromolar concentrations of MnCl2, but not MgCl2, prevented nitrogenase activity from NH 4 + inhibition. Mg(II), at a 100-fold concentration with respect to Mn(II), counteracted the protective effect of Mn(II) on nitrogenase activity. When Mn(II) was added to cells that had been given NH4Cl, stopping of NH 4 + uptake and recovery of nitrogenase activity took place, and a raise of NH 4 + concentration in medium developed. Furthermore, incubation of A. chroococcum cells with 20 M Mn(II) under air, but not under an argon: oxygen (79%:21%) gas mixture, resulted in NH 4 + excretion to the external medium. The Mn(II)-mediated uncoupling of nitrogen fixation from ammonium assimilation leads us to conclude that Mn(II) may act as a physiological inhibitor of glutamine synthetase.Abbreviations Hepes N-2-Hydroxyethylpiperazine-N-ethanesulfonic acid - Mops 3-(N-Morpholino)propanesulfonic acid  相似文献   

5.
P.-O. Lundquist 《Plant and Soil》2005,273(1-2):235-244
The carbon cost of nitrogenase activity was investigated to determine symbiotic efficiency of the actinorhizal root nodule symbiosis between the woody perennial Alnus incana and the soil bacterium Frankia. Respiration (CO2 production) and nitrogenase activity (H2 production) by intact nodulated root systems were continuously recorded in short-term assays in an open-flow gas exchange system. The assays were conducted in N2:O2, thus under N2-fixing conditions, in all experiments except for one. This avoided the declines in nitrogenase activity and respiration due to N2 deprivation that occur in acetylene reduction assays and during extended Ar:O2 exposures in H2 assays. Two approaches were used: (i) direct estimation of root and nodule respiration by removing nodules, and (ii) decreasing the partial pressure of O2 from 21 to 15% to use the strong relationship between respiration and nitrogenase activity to calculate CO2/H2. The electron allocation of nitrogenase was determined to be 0.6 and used to convert the results into moles of CO2 produced per 2e transferred by nitrogenase to reduction of N2. The results ranged from 2.6 to 3.4mol CO2 produced per 2e. Carbon cost expressed as gC produced per gN reduced ranged from 4.5 to 5.8. The result for this actinorhizal tree symbiosis is in the low range of estimates for N2-fixing actinorhizal symbioses and crop legumes. Methodology and comparisons of root nodule physiology among actinorhizal and legume plants are discussed.  相似文献   

6.
The effect of temperature and oxygen on diazotrophic growth of the thermophilic cyanobacterium HTF (High Temperature Form) Chlorogloeopsis was investigated using cells grown in light-limited continuous culture at a dilution rate of 0.02 h-1. Diazotrophy was more sensitive to elevated temperatures than growth with combined nitrogen. The maximum temperature for growth of cultures gassed with CO2-enriched air was more than 55 °C but less than 60 °C with N2 as the sole nitrogen source, but between 60°C and 65°C when nitrate was present in the medium. The effect of temperature on nitrogenase activity, photosynthesis and respiration in the dark was determined using cells grown at 55°C. Maximal rates of all three processes were observed at 55°C and rates at 60°C during shortterm incubations were not less than 75% of the maximum. However, nitrogenase activity at 60°C was unstable and decayed at a rate of 2.2 h-1 under air and at 0.3 h-1 under argon. Photosynthesis and respiration were more stable at 60°C than anoxic nitrogen fixation. The upper temperature limits for diazotrophic growth thus seem to be set by the stability of nitrogenase.Abbreviations chl chlorophyll a - DCMU N-(3,4-dichlorophenyl) N,N-dimethylurea - Taps N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid  相似文献   

7.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

8.
Carol Moll  Russell L. Jones 《Planta》1981,152(5):450-456
The relationship between calcium ions and gibberellic acid (GA3)-induced growth in the excised hypocotyl of lettuce (Lactuca sativa L.) was investigated. The short-term kinetics of growth responses were measured using a linear displacement transducer. Test solutions were added either as drops to the filter paper on which the hypocotyl stood (non-flow-past) or by switching solution flowing past the base of hypocotyl (flow-past), resulting in differences in growth behavior. Drops of CaCl2 added at a high concentration (10 mM) inhibited growth within a few minutes. This inhibition was reversed by ethylenediaminetetraacetic acid (EDTA). Drops of EDTA or ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid caused a rapid increase in growth rate. Growth induced by EDTA was not further promoted by GA3. A continuous H2O flow resulted in growth rates comparable to those in response to GA3. Addition of CaCl2 to the flow-past medium inhibited growth and this inhibition was reversed by a decrease in CaCl2 concentration. The growth rate was found to be a function of CaCl2 concentration. When a constant CaCl2 concentration was maintained by the flow-past medium, a shift in pH from 5.5 to 4.25 had no obvious effect on hypocotyl elongation. Gibberellic acid was found to reverse the inhibitory effect of CaCl2, causing an increase in growth rate similar to that found previously when GA3 was added to hypocotyls grown in H2O under non-flow-past conditions. We propose that gibberellin controls extension growth in lettuce hypocotyl sections by regulating the uptake of Ca2+ by the hypocotyl cells.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid - GA gibberellin - GA3 gibberellic acid - IAA indole-3-acetic acid  相似文献   

9.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

10.
Four strains of the green sulfur bacterium Chlorobium were studied in respect to nitrogen nutrition and nitrogen fixation. All strains grew on ammonia, N2, or glutamine as sole nitrogen sources; certain strains also grew on other amino acids. Acetylene-reducing activity was detectable in all strains grown on N2 or on amino acids (except for glutamine). In N2 grown Chlorobium thiosulfatophilum strain 8327 1 mM ammonia served to switch-off nitrogenase activity, but the effect of ammonia was much less dramatic in glutamate or limiting ammonia grown cells. The glutamine synthetase inhibitor methionine sulfoximine inhibited ammonia switch-off in all but one strain. Cell extracts of glutamate grown strain 8327 reduced acetylene and required Mg2+ and dithionite, but not Mn2+, for activity. Partially purified preparations of Rhodospirillum rubrum nitrogenase reductase (iron protein) activating enzyme slightly stimulated acetylene reduction in extracts of strain 8327, but no evidence for an indigenous Chlorobium activating enzyme was obtained. The results suggest that certain Chlorobium strains are fairly versatile in their nitrogen nutrition and that at least in vivo, nitrogenase activity in green bacteria is controlled by ammonia in a fashion similar to that described in nonsulfur purple bacteria and in Chromatium.Non-common abbreviations MSX Methionine sulfoximine - MOPS 3-(N-morpholino) propane sulfonic acid This paper is dedicated to Professor Norbert Pfennig on the occasion of his 60th birthday  相似文献   

11.
Specific binding of the calcium antagonist [3H]verapamil to a microsomal fraction, a presumptive plasma membrane fraction and an intracellular membrane fraction of the phototactic unicellular green alga Chlamydomonas reinhardtii has been demonstrated. The specific activity of the plasma membrane marker enzyme K+-stimulated, Mg2+-dependent ATPase was severalfold higher in the upper (polyethylene glycol-rich) than in the lower (dextran-rich) phase, and the reverse was established for the marker enzymes of intracellular membranes such as cytochrome c oxidase for mitochondria and antimycin Aresistant NADPH-cytochrome c reductase for endoplasmic reticulum. Chlorophyll as a marker for thylakoid fragments was exclusively found in the lower phase. In the microsomal fraction two specific binding sites of [3H]verapamil were found at 22°C, one with higher and a second with lower affinity to [3H]verapamil. Separation of plasma membranes from intracellular membranes revealed that the highaffinity binding site is attributed to the plasma membrane fraction whereas the low-affinity binding site can be attributed to the intracellular membrane fraction. Specific binding to both separated membrane fractions is saturable and reversible. [3H]Verapamil binding to plasma membranes was not inhibited by the calcium channel blockers diltiazem and nifedipine. However, in the intracellular membrane fraction [3H]verapamil could be displaced by diltiazem but not by nifedipine. Increasing concentrations of calcium chloride inhibited [3H]verapamil binding in both fractions.Abbreviations Bmax maximum density of binding sites - BSA bovine serum albumin - Cyt.c cytochrome c - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis(2-amino-ethylether)N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - IC50 concentration causing 50% inhibition - Mes [N-morpholino]ethanesulfonic acid - PEG polyethylene glycol - PMSF phenylmethylsulfonylfluoride - PVPP polyvinylpolypyrrolidone - TCA trichloroacetic acid  相似文献   

12.
When growing in laternating light-dark cycles, nitrogenase activity (acetylene reduction) in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. strain 23 (Oldenburg) is predominantly present during the dark period. Dark respiration followed the same pattern as nitrogenase. Maximum activities of nitrogenase and respiration appeared at the same time and were 3.6 mol C2H4 and 1.4 mg O2 mg Chl a -1·h-1, respectively. Cultures, adapted to light-dark cycles, but transferred to continuous light, retained their reciprocal rhythm of oxygenic photosynthesis and nitrogen fixation. Moreover, even in the light, oxygen uptake was observed at the same rate as in the dark. Oxygen uptake and nitrogenase activity coincided. However, nitrogenase activity in the light was 6 times as high (22 mol C2H4 mg Chl a -1·h-1) as compared to the dark activity. Although some overlap was observed in which both oxygen evolution and nitrogenase activity occurred simultaneously, it was concluded that in Oscillatoria nitrogen fixation and photosynthesis are separated temporary. If present, light covered the energy demand of nitrogenase and respiration very probably fulfilled a protective function.  相似文献   

13.
A comparative study was conducted on the effect of NH4Cl on growth, vesicle formation and formation of nitrogenase of Frankia strains Cc1.17 and Cp1.2, derived from root nodules of Colletia cruciata and Comptonia peregrina, respectively. On a medium without combined nitrogen (P-N), both strains formed spherical cells, called vesicles, like many other Frankia strains. Data are presented on the number of vesicles per mg protein, after cultivation in media with sodium propionate as C-source without combined nitrogen (P-N) or with 0.2 g NH4Cl/l (P+N). Strain Cp1.2 as may other Frankia strains, showed on P+N medium a very strong reduction of vesicle formation of 99% relative to the number of vesicles formed on P-N medium, after 11 days growth. However, in strain Cc11.17 this reduction was only 70%. The occurence of relatively large numbers of vesicles in P+N media has not yet been reported for other Frankia strains. No acetylene reduction activity was found in NH 4 + -grown cells. The regulation of induction of nitrogenase in Frankia by NH4Cl was tested by immuno-gelectrophoresis using antisera against nitrogenase of Rhizobium leguminosarum PRE. The component I of the enzyme showed crossreactivity while the component II had only a weak crossreaction. The experiments indicated that no nitrogenase was detectable in the NH 4 + -grown cells. For the localization of nitrogenase, relative amounts of the enzyme were compared in whole cells and vesicle-enriched fractions. Western blots showed a significant enrichment of nitrogenase in the vesicle fractions, which indicated that most of the nitrogenase was localized in the vesicle.  相似文献   

14.
Tisa  L. S.  Ensign  J. C. 《Archives of microbiology》1987,147(4):383-388
The relationship between nitrogen fixation and development of a specialized cell structure, called the vesicle, was studied using four Frankia isolates. Nitrogenase activity was repressed in all four strains during growth with ammonia. Strain CpI1 formed no vesicles during NH4 growth. Strains ACN1 ag , EAN1pec and EUN1f produced low numbers of vesicles in the presence of ammonia. Following transfer to nitrogen-free media, a parallel increase in nitrogenase activity and vesicle numbers occurred with all four isolates. Appearance of nitrogenase activity was more rapid in those strains that possessed some vesicles at the time of shift to N2 as a nitrogen source. The ratio of vesicle numbers to level of nitrogenase activity varied widely among the four strains and in response to different growth conditions and culture age of the individual strains. Optimum conditions of temperature, carbon and energy source, nitrogen source and availability of iron and molybdenum were different for each of the four strains. Those conditions that significantly reduced nitrogenase activity were always associated with decreased numbers of vesicles.  相似文献   

15.
Summary The cellular slime mould Polysphondylium violaceum contains a cAMP-dependent protein kinase resembling the mammalian type I enzyme. The appearance of this enzyme is developmentally regulated. The level of kinase activity is very low in vegetative cell and increases more than tenfold during differentiation.The catalytic subunit of this cAMP-dependent protein kinase has a native molecular weight of 60–80 kDa, an isoelectric point of 5.7 and an apparent Km for ATP and Kemptide of 50 and 13.4 µM respectively. It is characterised by its sensitivity to a synthetic inhibitor specific for cAMP-dependent protein kinase. The regulatory subunit has a molecular weight of 50 kDa.Abbreviations HEPES N-2-Hydroxyethylpiperazine-N-2-ethane sulphonic acid - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis-(ßaminoethyl ether)-N,N,N,N-tetraacetic acid - SDS sodium dodecyl sulphate  相似文献   

16.
Inhibition of photosynthetic growth of Rhodopseudomonas capsulata by metronidazole was dependent on the nitrogen supply in culture solutions. Cultures fixing dinitrogen were more susceptible to inhibition by low concentrations than those supplied with NH 4 + . Light-dependent C2H2 reduction and H2 production by washed cells were inhibited by 80% and 60% respectively by 1 mM metronidazole. When this compound was first reduced with H2-palladised asbestos prior to assay, it only partially restricted C2H2 reduction in washed cells (33%) compared with unreduced inhibitor (68%). Metronidazole was without effect on other metabolic functions. Thus, even at 40 mM it did not inhibit either (a) dark or light respiration in cells grown under photo- and chemo-heterotrophic conditions; (b) H2-dependent photoreduction of 14CO2; (c) -glutamyltransferase activity of glutamine synthetase in cell-free extracts (25 mM inhibitor).Metronidazole (1 mM) completely inhibited C2H2 reduction by washed cells of Azotobacter vinelandii. The dithionite-dependent C2H2 reduction of a partially purified nitrogenase was only partially inhibited (30%) by 1 mM metronidazole.  相似文献   

17.
When Azotobacter chroococcum cells grown in batch culture under N2-fixing conditions were transferred to a medium lacking a nitrogen source, the cellular C/N ratio, the amount of alginic acid released into the external medium and the rate of endogenous respiration increased appreciably after 6 h to the exclusion of dinitrogen, whereas nitrogenase activity did not undergo any significant change. Nitrogen deficiency caused a decrease in the ammonium inhibition of nitrogenase activity from 95% inhibition at zero time to 14% after 6 h incubation under dinitrogen starvation, with no difference in the rate of ammonium utilization by N2-fixing and N2-starved cells being observed. This suggests that a balance of nitrogen and carbon assimilation is necessary for the ammonium inhibition of nitrogenase activity in A. chroococcum to take place.  相似文献   

18.
Intact chloroplasts were isolated from sugarbeet leaves by the mechanical disruption technique normally used for spinach. The chloroplast pellet contained a ring of white irregularly shaped crystals which were identified as calcium oxalate. The chloroplasts were greater than 90% intact yet good rates of CO2 fixation were only obtained when inorganic pyrophosphate or 3-phosphoglycerate were added to the assay medium. Chloroplasts free of calcium oxalate were prepared by purification on a three step Percoll gradient. These purified chloroplasts were highly intact and showed high rates of CO2 fixation without adding inorganic pyrophosphate or 3-phosphoglycerate. With optimal assay conditions (0.2 mM orthophosphate and pH 8.0) rates of 110–130 mole per milligram chlorophyll per hour were routinely obtained. It is concluded that intact chloroplasts capable of high rates of CO2 fixation can be prepared from sugarbeet leaves using a simple three step Percoll gradient.Abbreviations BSA bovine serum albumin - Chl chlorophyll - Pi inorganic orthophosphate - PPi inorganic pyrophosphate - PGA 3-phosphoglycerate - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis-(aminoethyl ether) - N,N tetraacetic acid  相似文献   

19.
  • 1.1. Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA, carnitine, EGTA (ethylene glycol bis (β-aminoethyl ether) N,N′-tetraacetic acid) and varying amounts of calcium.
  • 2.2. When a KCl-based incubation medium was used, the oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1–10μM.
  • 3.3. When a sucrose-based incubation medium was used, the basal rate of palmitate oxidation was about half of that observed with the KCl-medium and calcium had a stimulatory effect.
  • 4.4. With the KCl-medium the rate of oxygen consumption was inhibited by calcium with α-ketoglutarate as well as palmitate as the respiratory substrate.
  • 5.5. No inhibitory effect of calcium was observed with succinate or β-hydroxybutyrate.
  • 6.6. With the KCl-medium and with α-ketoglutarate as the respiratory substrate, state 3 respiration but not state 4 respiration was inhibited by calcium.
  • 7.7. When the sucrose-medium was used, state 3 respiration was first inhibited by calcium, but this inhibition was gradually relieved and the respiratory rate finally became higher than it was before calcium addition.
  相似文献   

20.
T. Shimmen  M. Yano 《Protoplasma》1986,132(3):129-136
Summary Native tropomyosin from rabbit skeletal muscle introduced by intracellular perfusion intoChara cells inhibited the cytoplasmic streaming irrespective of the Ca2+ concentration. To find the action site of native tropomyosin inChara, the cytoplasmic streaming was reconstituted by introducing isolated endoplasm into actin donorChara cells from which native endoplasm had been removed. The reconstituted streaming was inhibited by pretreatment of the actin donor cells with native tropomyosin but not by that of the endoplasm, suggesting that the native tropomyosin inhibited the cytoplasmic streaming by binding toChara actin bundles. Staining of the actin bundles with FITC-labeled native tropomyosin also showed that the native tropomyosin could bind to the actin bundles. Streaming reconstituted fromChara actin bundles and skeletal muscle myosin was insensitive to Ca2+, but became sensitive on application of the native tropomyosin.Abbrevations APW artificial pond water - ATP adenosine 5-triphosphoric acid - BSA bovine serum albumin - EDTA ethylene diamine tetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethylether) N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - FITC-NTM fluorescein isothiocyanate-labeled native tropomyosin - NTM native tropomyosin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号