首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretory production of a single-chain antibody fragment (scFv) by recombinant Pichia pastoris using the methanol inducible AOX1 promoter is limited biochemically by retarded secretion, and economically by the high demand for pure oxygen. To address the problem, the adaptation phase with growth-limiting feeding of glycerol before the production phase was optimized. In a standard procedure with a short glycerol-feeding phase before induction, scFv accumulated in the supernatant only after 15 h. Conversely, scFv started to appear immediately in the medium upon methanol induction when the glycerol-feeding phase was extended to 18 h. Interestingly, despite a significantly lower cell density in the cultivation with extended glycerol feeding, the same amount of functional product of 300 mg/L was obtained about 30 h after the start of glycerol feeding with both methods. mRNA analysis revealed that the higher and faster production of the product was related to longer lasting induction of the scFv mRNA. Additional effects of a better adaptation of the secretion machinery may be suggested by higher expression of unfolded protein response-related genes KAR2 and PDI. A clear benefit of the longer glycerol-feeding phase was a 75% reduction of the consumption of both pure oxygen and methanol, and a significantly lower cell density, which would be beneficial for down-stream purification of the product.  相似文献   

2.
Extracellular secretion of over 4 g x L(-1) of the A33 scFv antibody fragment was achieved in Pichia pastoris at the 10 L bioreactor scale using minimal medium and feedback control of the methanol concentration. Since methanol acts as both inducer and carbon source, its close regulation is a crucial factor in achieving optimal fermentation conditions. The antibody fragment production levels of both Mut+ and MutS phenotypes were compared in a bioreactor under closed-loop PID control of the methanol level. As expected, the MutS phenotype has a growth rate lower than that of the Mut+ (0.37 vs 1.05 d(-1)) when growing under methanol. However, protein productivity and cell yield on substrate are almost double that of the Mut+ (18.2 vs 9.3 mg A33 sc per gram of methanol). Induction at wet cell weight of 350 g x L(-1) for the MutS also has a positive effect on the final product concentration. Both Mut+ and MutS phenotypes reach a maximum biomass density around 450 g x L(-1) wet cell weight, independent of methanol concentration, reactor scale, or induction density. This reactor configuration allows for reproducible fermentation schemes with different Pichia pastoris phenotypes with AOX promoters, without prior knowledge of the culture growth parameters.  相似文献   

3.
The expression of a humanized single-chain variable domain fragment antibody (A33scFv) was optimized for Pichia pastoris with yields exceeding 4 g L(-1). A33scFv recognizes a cell surface glycoprotein (designated A33) expressed in colon cancer that serves as a target antigen for immunotherapy of colon cancer. P. pastoris with a MutS phenotype was selected to express A33scFv, which was cloned under regulation of the methanol-inducible AOX1 promoter. We report the optimization of A33scFv production by examining methanol concentrations using fermentation technology with an on-line methanol control in fed-batch fermentation of P. pastoris. In addition, we examined the effect of pH on A33scFv production and biomass accumulation during the methanol induction phase. A33scFv production was found to increase with higher methanol concentrations, reaching 4.3 g L(-1) after 72 h induction with 0.5% (v/v) methanol. Protein production was also greatly affected by pH, resulting in higher yields (e.g., 4.88 g L(-1)) at lower pH values. Biomass accumulation did not seem to vary when cells were induced at different pH values, but was greatly affected by lower concentration of methanol. Purification of A33scFv from clarified medium was done using a two-step chromatographic procedure using anion-exchange and hydrophobic interaction chromatography, resulting in 25% recovery and >90% purity. Pure A33scFv was tested for functionality using surface plasmon resonance and showed activity against immobilized A33 antigen. Our results demonstrate that functional A33scFv can be produced in sufficient quantities using P. pastoris for use in further functionality studies and diagnostic applications.  相似文献   

4.
The yeast Pichia pastoris is a suitable production system for recombinant proteins due to its strong methanol-inducible AOX1 promoter. A key parameter of the production process is the specific methanol uptake rate. To control the methanol uptake and simultaneously maintain a constant methanol concentration during the production phase, two strategies were developed to generate purposeful oxygen limitation and to feed-forward control the specific methanol uptake rate into the optimum range. First, the cell density at induction was adjusted by prolonged preinduction glycerol feeding. Alternatively, the airflow rate was restricted and increased in parallel with the biomass. While the product accumulation started 20 h earlier with the first approach, the specific production rate of a single-chain antibody fragment was three times higher in the latter case. After 70 h of production, both schemes yielded product concentrations in the gram-per-liter range. Moreover, they release the requirement for dosage of pure oxygen and thereby can facilitate the scale-up of the production process. The different production profiles indicate that the impact of specific methanol uptake rate on protein production by recombinant P. pastoris depends on the control mode.  相似文献   

5.
In this paper we report the development of a recombinant strain of the yeast Pichia pastoris, which secretes an anti-carcinoembryonic antigen single chain Fv (scFv) antibody fragment to the culture supernatant as a biologically active protein, at levels of 1.2 g l(-1). The yeast scFv was purified by IMAC, with a final yield of approximately 0.440 g of 93% pure scFv per liter of culture supernatant. The specific activity in ELISA of the yeast scFv was almost three times higher than that of a bacterial periplasmic counterpart. These results reaffirm that the yeast P. pastoris is a suitable host for high level production of scFv antibody fragments with potential in vivo diagnostic and therapeutic applications.  相似文献   

6.
Glycoengineering enabled the production of proteins with human N-linked glycans by Pichia pastoris. This study used a glycoengineered P. pastoris strain which is capable of producing humanized glycoprotein with terminal galactose for monoclonal antibody production. A design of experiments approach was used to optimize the process parameters. Followed by further optimization of the specific methanol feed rate, induction duration, and the initial induction biomass, the resulting process yielded up to 1.6 g/L of monoclonal antibody. This process was also scaled-up to 1,200-L scale, and the process profiles, productivity, and product quality were comparable with 30-L scale. The successful scale-up demonstrated that this glycoengineered P. pastoris fermentation process is a robust and commercially viable process.  相似文献   

7.
The methylotrophic yeast Pichia pastoris is a powerful system for production of recombinant proteins, showing high ability to secrete properly folded proteins. A major plus is the strong AOX1 promoter highly induced by methanol. During growth on methanol, however, oxygen readily becomes limiting. In oxygen-limited cultivations of recombinant Pichia pastoris, the methanol concentration had a strong impact on the production of a single-chain antibody fragment (scFv). High methanol concentrations were required to compensate the lack of oxygen and fully induce recombinant protein production, at the same time reducing gratuitous biomass formation due to a lower biomass yield. Product concentrations of 60, 150, and 350 mg/L were obtained with methanol concentrations of 0.3, 1, and 3% (v/v). Moreover, accumulation of a putative product fragment that cannot be removed during affinity purification was prevented at high methanol concentrations. Cell vitality after 100 h was maintained above 98% and 96% of the culture with 0.3% and 3% methanol, respectively. In cultivations supplemented with oxygen, in contrast, methanol concentration between 0.3% and 3% did not influence the product yield of 300-400 mg/L. Thus, efficient recombinant protein production under oxygen-limitation seems to require high methanol concentrations, enabling product concentration as high as otherwise obtained only with expensive supply of pure oxygen.  相似文献   

8.
为了在毕赤酵母表达系统中分泌表达人骨保护素 (osteoprotegerin ,OPG) ,以人骨肉瘤细胞系MG6 3的mRNA为模板 ,采用RT PCR法得到人OPG编码区cDNA ,克隆入毕赤酵母表达载体pPICZ B ,电转化毕赤酵母GS115 (Mut+) ,经 3%甲醇诱导分泌表达人OPG与组氨酸的融合蛋白 .SDS PAGE及Western印迹分析表明 ,有分子量约 6 6kD的目的蛋白表达 .纯化后的表达产物加入体外培养的小鼠骨髓细胞培养基中 ,当浓度为 10 0ng ml时 ,象牙片上骨吸收陷窝的数量及玻片上的TRAP阳性多核细胞的数量均减少 (P <0 0 5 ) .而同时加入人OPG的多克隆抗体后 ,这一抑制作用可被拮抗 ,在浓度为 5 0ng ml时则无此作用 .人OPG蛋白在酵母系统的成功表达 ,为该蛋白的进一步应用研究提供了依据 .  相似文献   

9.
为了探讨人源抗甲型肝炎(甲肝)病毒scFv—Fc融合抗体在酵母中的表达特性,将获得的人源抗甲肝病毒中和性单链可变区抗体(scFv抗体)基因克隆入含信号肽及人IgG1Fc抗体基因的酵母细胞表达载体中,获得了一株中和性人源抗甲肝病毒pPiscFv—FcHA16融合抗体的分泌表达,并对表达产物进行了纯化。同时对表达产物的生物学特性进行了一系列鉴定。表达的pPiscFv—FcHA16融合抗体为具有不同糖基化形式的同源二聚体,与相应的CHO细胞表达的IgG抗体相比,pPiscFv—FcHA16融合抗体仍保持很好的抗原结合活性,以及与中和性鼠抗甲肝病毒单克隆抗体的竞争抑制能力。同时也保持了对甲肝病毒的体外中和活性。这些结果表明,在酵母中表达的单链可变区(scFv)与IgG1Fc区的融合抗体具有很好的生物学活性,有希望用做体外诊断,用纯化相应的抗原,或者可能用于体内预防与治疗。  相似文献   

10.
Anti-ErbB2 antibodies are used as convenient tools in exploration of ErbB2 functional mechanisms and in treatment of ErbB2-overexpressing tumors. When we employed the yeast Pichia pastoris to express an anti-ErbB2 single-chain antibody (scFv) derived from the tumor-inhibitory monoclonal antibody A21, the yield did not exceed 1-2 mg/L in shake flask cultures. As we considered that the poor codon usage bias may be one limiting factor leading to the inefficient translation and scFv production, we designed and synthesized the full-length scFv gene by choosing the P. pastoris preferred codons while keeping the G+C content at relatively low level. Codon optimization increased the scFv expression level 3- to 5-fold and up to 6-10 mg/L. Northern blotting further confirmed that the increase of scFv expression was mainly due to the enhancement of translation efficiency. Investigation of culture conditions revealed that the maximal cell growth and scFv expression were achieved at pH 6.5-7.0 with 2% casamino acids after 72 h methanol induction. Secreted scFv was easily purified (>95% homogeneous product) from culture supernatants in one step by using Ni2+ chelating affinity chromatography. The yield was approximately 10-15 mg/L. Functional studies showed that the A21 scFv could be internalized with high efficiency after binding to the ErbB2-overexpressing cells, suggesting this regent may prove especially useful for ErbB2-targeted immunotherapy.  相似文献   

11.
A single-chain antibody fragment directed against fimbriae of enterotoxigenic Escherichia coli was produced by recombinant Pichia pastoris under control of the methanol-inducible AOX1 promoter. In high-cell-density cultivation on defined medium, methanol-limited and methanol-saturated conditions were compared. After batch and fed-batch phase on glycerol, the methanol concentration was controlled to 1% (v/v) or methanol was fed with an exponentially increasing rate. Whereas methanol limitation impaired cell integrity and product quality, finally yielding no active product as a result of degradation, oxygen limitation was acceptable. To postpone the onset of limitation, the inlet air was enriched by pure oxygen. Because of faster methanol consumption, however, the process became sensitive to fluctuations in the feeding rate, and complete arrest of metabolism encountered upon small perturbations shortened the active production period. Without additional oxygen supply, the process was robust. Loss of culture integrity was monitored by flow cytometry and was found to precede changes in metabolic rates; it can thus serve as a sensitive indicator of forthcoming problems. Single-step downstream processing from the culture supernatant by His-affinity chromatography was efficient when antifoam agent that coagulates upon pH titration was omitted and yielded 1 g of purified lyophilized product from 6 L initial culture volume.  相似文献   

12.
The bivalent anti-T-cell immunotoxin A-dmDT390-bisFv(G(4)S) was developed for treatment of T-cell leukemia and autoimmune diseases and for tolerance induction for transplantation. This immunotoxin was produced extracellularly in toxin-sensitive Pichia pastoris JW102 (Mut(+)) under control of the AOX1 promoter. There were two major barriers to efficient immunotoxin production, the toxicity of the immunotoxin for P. pastoris and the limited capacity of P. pastoris to secrete the immunotoxin. The immunotoxin toxicity resulted in a decrease in the methanol consumption rate, cessation of cell growth, and low immunotoxin productivity after the first 22 h of methanol induction. Continuous cell growth and continuous immunotoxin secretion after the first 22 h of methanol induction were obtained by adding glycerol to the methanol feed by using a 4:1 methanol-glycerol mixed feed as an energy source and by continuously adding a yeast extract solution during methanol induction. The secretory capacity was increased from 22.5 to 37 mg/liter by lowering the induction temperature. A low temperature reduced the methanol consumption rate and protease activity in the supernatant but not cell growth. The effects of adding glycerol and yeast extract to the methanol feed were synergistic. Adding yeast extract primarily enhanced methanol utilization and cell growth, while adding glycerol primarily enhanced immunotoxin production. The synergy was further enhanced by decreasing the induction temperature from 23 to 15 degrees C, which resulted in a robust process with a yield of 37 mg/liter, which was sevenfold greater than the yield previously reported for a toxin-resistant CHO cell expression system. This methodology should be applicable to other toxin-related recombinant proteins in toxin-sensitive P. pastoris.  相似文献   

13.
We report two expression vectors in Pichia pastoris that direct the synthesis of recombinant single chain antibody variable region (scFv), derived from anti-Z-DNA monoclonal antibody Z22. The first vector codes for a scFv fused to the Ig binding domain of staphylococcal Protein A. The second vector codes for the scFv fused to the Fc fragment of the human IgG1. The fusion partner simplified the detection and purification of the secreted protein. These constructs yielded high level expression of an scFv with specific binding activity toward a Z form of DNA, with binding activity comparable to that of the scFv molecule produced in an Escherichia coli expression system and the original monoclonal antibody.  相似文献   

14.
Fed-batch fermentation for production of a single-chain Fv antibody fragment (scFv) expressed as a recombinant periplastic protein from Escherichia coli was investigated. A high cell density of 50 g dry cell weight per liter was routinely achieved in a 14-L vessel by controlled exponential feeding of glucose to impose a constant specific growth rate. Following biomass accumulation, induction of the tac promoter by addition of IPTG was accompaied by a linear feed of yeast extract. The concentration of yeast extract feed was found to be highly influential upon both concentration and location of active product. Although scFv fragments were specifically targeted to the periplasmic space, at yeast extract feed rates of 0.72 g/h the final location was largely extracellular (68% to 79%). Total concentrations (extracellular + periplasmic) were of the order of 5 to 8 mg/L. A ten-fold increase in yeast extract supply increased total scFv concentration to almost 200 mg/L and 78% of this yield was retained in the periplasm. Control of such leakage of the recombinant product is fundamental to process design of downstream operations for product recovery. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 611-622, 1997.  相似文献   

15.
为了将可中和对虾白斑综合症病毒(WSSV)的单链抗体P1D3在酵母中实现表达,以原核表达载体M13噬菌粒为模板,设计带有SnaBⅠ和EcoRⅠ酶切位点的特异性引物,通过PCR方法扩增P1D3基因。经过酶切、连接反应将该基因连入大肠杆菌-酵母穿梭质粒pPIC9K上。重组质粒pPIC9K-scFvP1D3经BglⅡ线性化后,用电转化的方法转入毕赤酵母(Pichiapastoris)GS115中。通过PCR和DNA测序,挑选和鉴定阳性克隆。经甲醇诱导,P1D3在酵母中获得分泌表达。ELISA实验结果表明,酵母表达上清液中的单链抗体具有较高的WSSV结合活性,而且其活性要高于大肠杆菌所表达抗体的活性。表达条件优化后,单链抗体在酵母中最高表达量可达302mg/L,为开展对虾被动免疫研究提供了新的抗体来源。  相似文献   

16.
The Pichia pastoris expression system was used to produce functionalized single-chain antibody fragments (scFv) directed against the ED-B domain of the B-fibronectin (B-Fn) isoform which was found to be present only in newly formed blood vessels during tumor angiogenesis. Therefore, scFv antibody fragments recognizing the ED-B domain are potential markers for angiogenesis. We constructed four functionalized scFv antibody fragments for direct labeling with radioactive molecules or toxins or for attachment to liposomes serving as carriers for cytotoxic or antiangiogenic compounds. The C-termini of the scFv antibody fragments contain 1-3 cysteine residues that are separated by a hydrophilic linker (GGSSGGSSGS) from the binding domain and are accessible for site-specific functionalization with thiol-reactive reagents. Plasmid expression, culture conditions, and purification were optimized in 1-L cultures. The scFv antibody fragments were purified by anion exchange chromatography. The yields were 5-20 mg/L culture medium. The large-scale production of one scFv antibody fragment in a 3.7-L fermenter gave a yield of 60 mg. The reactivity of the cyteines was demonstrated by labeling with the thiol-reactive fluorescent dye ABD-F. The four scFv antibody fragments bound specifically to ED-B-modified Sepharose and binding was further confirmed by immunofluorescence on cell cultures using ED-B-positive human Caco-2 tumor cells. Furthermore, we could demonstrate specific binding of scFv-modified liposomes to ED-B-positive tumor cells. Our results indicate that the P. pastoris expression system is useful for the large-scale production of cysteine-functionalized alpha-ED-B scFv antibody fragments.  相似文献   

17.
Glycoengineering technology can elucidate and exploit glycan related structure-function relationships for therapeutic proteins. Glycoengineered yeast has been established as a safe, robust, scalable, and economically viable expression platform. It has been found that specific productivity of antibodies in glycoengineered Pichia pastoris is a non-linear function of specific growth rate that is dictated by a limited methanol feed rate. The optimal carbon-limited cultivation requires an exponential methanol feed rate with an increasing biomass concentration and more significantly an increase in heat and mass transfer requirements that often become the limiting factor in scale-up. Both heat and mass transfer are stoichiometrically linked to the oxygen uptake rate. Consequently an oxygen-limited cultivation approach was evaluated to limit the oxygen uptake rate and ensure robust and reliable scale-up. The oxygen-limited process not only limited the maximum oxygen uptake rate (and consequently the required heat removal rate) in mut+ P. pastoris strains but also enabled extension of the induction phase leading to an increased antibody concentration (1.9 g L−1 vs. 1.2 g L−1), improved N-glycan composition and galactosylation, and reduced antibody fragmentation. Furthermore, the oxygen-limited process was successfully scaled to manufacturing pilot scale and thus presents a promising process option for the glycoengineered yeast protein expression platform.  相似文献   

18.
19.
In the last few years the Pichia pastoris expression system has been gaining more and more interest for the expression of recombinant proteins. Many groups have employed fermentation technology in their investigations because the system is fairly easy to scale up and suitable for the production in the milligram to gram range. A large number of heterologous proteins from different sources has been expressed, but the fermentation process technology has been investigated to a lesser extent. A large number of fermentations are carried out in standard bioreactors that may be insufficiently equipped to meet the demands of high-cell-density fermentations of methylotrophic yeasts. In particular, the lack of on-line methanol analysis leads to fermentation protocols that may impair the optimal expression of the desired products. We have used a commercially available methanol sensor to investigate in detail the effects of supplementary glycerol feeding while maintaining a constant methanol concentration during the induction of a Mut(+) strain of Pichia pastoris. Specific glycerol feed rates in the range of 38-4.2 mg. g(-1). h(-1) (mg glycerol per gram fresh weight per hour) were investigated. Expression of the recombinant scFv antibody fragment was only observed at specific feed rates below 6 mg. g(-1). h(-1). At low specific feed rates, growth was even lower than with methanol as the sole carbon source and the harvest expression level of the scFv was only half of that found in the control fermentation. These results show that glycerol inhibits expression driven by the AOX1 promoter even at extremely limited availability and demonstrate the benefits of on-line methanol control in Pichia fermentation research.  相似文献   

20.
发酵条件对毕赤酵母表达重组人干扰素ω糖基化的影响   总被引:5,自引:0,他引:5  
发酵条件是影响毕赤酵母 (P .pastoris)表达外源重组糖蛋白时糖基化的重要因素。通过菌体浓度、起始pH值、甲醇诱导浓度和周期、装液量等摇瓶发酵实验 ,研究不同发酵条件对毕赤酵母表达分泌型重组人干扰素ω(rhIFNω)过程中糖基化的影响 ;同时 ,在连续培养过程中考察pH值变化对rhIFNω糖基化的影响和分批发酵过程中rhIFNω糖基化的变化。结果表明 ,控制菌体密度 250g L(WCW)、起始pH值 6 0、装液量小于 30mL、甲醇诱导浓度 15g L、甲醇诱导 3次 (每 24h诱导一次 )等发酵条件 ,有利于摇瓶发酵过程中rhIFNω的糖基化 ;控制pH值 70~75可促进rhIFNω的糖基化 ;分批发酵过程中 ,糖基化与非糖基化rhIFNω的含量有同比变化趋势 ,但糖基化rhIFNω所占比例明显低于摇瓶发酵实验的结果 ,其原因有待进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号