首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dichlororibofuranosyl benzimidazole (DRB), a potent inhibitor of nuclear RNA synthesis and messenger RNA (mRNA) accumulation, produces a paradoxical mobilization of rRNA and mRNA from the subpolysomal pool into polysomes in HeLa cells during the first 40 min of treatment. S6 is phosphorylated concurrently with polysome accumulation, and ribosomal subunits containing phosphorylated S6 are preferentially localized in polysomes, indicating that they form initiation complexes more readily than their non-phosphorylated counterparts.  相似文献   

2.
3.
When resting (G0) mouse 3T6 fibroblasts are serum stimulated to reenter the cell cycle, the rates of synthesis of rRNA and ribosomal proteins increase, resulting in an increase in ribosome content beginning about 6 h after stimulation. In this study, we monitored the content, metabolism, and translation of ribosomal protein mRNA (rp mRNA) in resting, exponentially growing, and serum-stimulated 3T6 cells. Cloned cDNAs for seven rp mRNAs were used in DNA-excess filter hybridization studies to assay rp mRNA. We found that about 85% of rp mRNA is polyadenylated under all growth conditions. The rate of labeling of rp mRNA relative to total polyadenylated mRNA changed very little after stimulation. The half-life of rp mRNA was about 11 h in resting cells and about 8 h in exponentially growing cells, values which are similar to the half-lives of total mRNA in resting and growing cells (about 9 h). The content of rp mRNA relative to total mRNA was about the same in resting and growing 3T6 cells. Furthermore, the total amount of rp mRNA did not begin to increase until about 6 h after stimulation. Since an increase in rp mRNA content did not appear to be responsible for the increase in ribosomal protein synthesis, we determined the efficiency of translation of rp mRNA under different conditions. We found that about 85% of pulse-labeled rp mRNA was associated with polysomes in exponentially growing cells. In resting cells, however, only about half was associated with polysomes, and about 30% was found in the monosomal fraction. The distribution shifted to that found in growing cells within 3 h after serum stimulation. Similar results were obtained when cells were labeled for 10.5 h. About 70% of total polyadenylated mRNA was in the polysome fraction in all growth states regardless of labeling time, indicating that the shift in mRNA distribution was species specific. These results indicate that the content and metabolism of rp mRNA do not change significantly after growth stimulation. The rate of ribosomal protein synthesis appears to be controlled during the resting-growing transition by an alteration of the efficiency of translation of rp mRNA, possibly at the level of protein synthesis initiation.  相似文献   

4.
5.
The biosynthesis of proteins, ribosomal RNA and other components of the rat liver protein-synthesizing system during the reparation and subsequent activation of translation inhibited by a sublethal dose cycloheximide (CHI, 3 mg/kg) was studied. It was found that the incorporation of labeled precursors into proteins and ribosomal rRNA isolated from free and membrane-bound polysomes is repaired already 3 hours after CHI injection. 6-9 hours thereafter, the level of component labeling reaches control values, whereas the total protein biosynthesis is retarded. After 12-24 hours, marked stimulation of ribosome biosynthesis and the integration of ribosomes into polysomes are observed together with an asymmetric accumulation of excessive amounts of newly synthesized 40S subunits into polysomes 12 hours after CHI infection. The putative mechanisms of the activation of expression of the part of the genome responsible for protein and ribosomal rRNA synthesis as well as for the synthesis of other components of the protein-synthesizing system are discussed.  相似文献   

6.
A key event in ribosomal protein synthesis is the translocation of deacylated tRNA, peptidyl tRNA and mRNA, which is catalyzed by elongation factor G (EF-G) and requires GTP. To address the molecular mechanism of the reaction we have studied the functional role of a tRNA exit site (E site) for tRNA release during translocation. We show that modifications of the 3' end of tRNAPhe, which considerably decrease the affinity of E-site binding, lower the translocation rate up to 40-fold. Furthermore, 3'-end modifications lower or abolish the stimulation by P site-bound tRNA of the GTPase activity of EF-G on the ribosome. The results suggest that a hydrogen-bonding interaction of the 3'-terminal adenine of the leaving tRNA in the E site, most likely base-pairing with 23S rRNA, is essential for the translocation reaction. Furthermore, this interaction stimulates the GTP hydrolyzing activity of EF-G on the ribosome. We propose the following molecular model of translocation: after the binding of EF-G.GTP, the P site-bound tRNA, by a movement of the 3'-terminal single-stranded ACCA tail, establishes an interaction with 23S rRNA in the adjacent E site, thereby initiating the tRNA transfer from the P site to the E site and promoting GTP hydrolysis. The co-operative interaction between the E site and the EF-G binding site, which are distantly located on the 50S ribosomal subunit, is probably mediated by a conformational change of 23S rRNA.  相似文献   

7.
Ribosome synthesis and metabolism has been studied in a plasmacytoma cell line synchronized by isoleucine deprivation. Ribosomal RNA (rRNA) was characterized by gel electrophoresis. The rate of ribosome synthesis (as measured by the appearance of labelled rRNA in the cytoplasm) varied greatly during the cell cycle. It was low during the G l phase, increased rapidly during the S phase, remained high during part of the G 2 phase, and dropped to a minimum during mitosis. A slowdown in the increasing rate of RNA synthesis was observed during the middle of the S phase.No significant decrease in the total nucleotide pool per cell could be observed during the S phase. The accumulation of RNA (as determined by absorbance measurements) was highest during the S and G 2 phases.Pulse labelling of rRNA and pulse chase experiments demonstrated that newly synthesized ribosomal subunits entered into free polysomes to the highest extent during the S phase. The percentage of membrane-bound polysomes of total polysomes increased during the G 1 phase, as did the percentage of labelled rRNA in the membrane-bound fraction.  相似文献   

8.
Role of the 5.8S rRNA in ribosome translocation.   总被引:1,自引:0,他引:1       下载免费PDF全文
Studies on the inhibition of protein synthesis by specific anti 5.8S rRNA oligonucleotides have suggested that this RNA plays an important role in eukaryotic ribosome function. Mutations in the 5. 8S rRNA can inhibit cell growth and compromise protein synthesis in vitro . Polyribosomes from cells expressing these mutant 5.8S rRNAs are elevated in size and ribosome-associated tRNA. Cell free extracts from these cells also are more sensitive to antibiotics which act on the 60S ribosomal subunit by inhibiting elongation. The extracts are especially sensitive to cycloheximide and diphtheria toxin which act specifically to inhibit translocation. Studies of ribosomal proteins show no reproducible changes in the core proteins, but reveal reduced levels of elongation factors 1 and 2 only in ribosomes which contain large amounts of mutant 5.8S rRNA. Polyribosomes from cells which are severely inhibited, but contain little mutant 5.8S rRNA, do not show the same reductions in the elongation factors, an observation which underlines the specific nature of the change. Taken together the results demonstrate a defined and critical function for the 5.8S rRNA, suggesting that this RNA plays a role in ribosome translocation.  相似文献   

9.
A conserved translation factor, known as EF-G in bacteria, promotes the translocation of tRNA and mRNA in the ribosome during protein synthesis. Here, EF-G.ribosome complexes in two intermediate states, before and after mRNA translocation, have been probed with hydroxyl radicals generated from free Fe(II)-EDTA. Before mRNA translocation and GTP hydrolysis, EF-G protected a limited set of nucleotides in both subunits of the ribosome from cleavage by hydroxyl radicals. In this state, an extensive set of nucleotides, in the platform and head domains of the 30S subunit and in the L7/L12 stalk region of the 50S subunit, became more exposed to hydroxyl radical attack, suggestive of conformational changes in these domains. Following mRNA translocation, EF-G protected a larger set of nucleotides (23S rRNA helices H43, H44, H89, and H95; 16S rRNA helices h5 and h15). No nucleotide with enhanced reactivity to hydroxyl radicals was detected in this latter state. Both before and after mRNA translocation, EF-G protected identical nucleotides in h5 and h15 of the 30S subunit. These results suggest that h5 and h15 may remain associated with EF-G during the dynamic course of the translocation mechanism. Nucleotides in H43 and H44 of the 50S subunit were protected only after translocation and GTP hydrolysis, suggesting that these helices interact dynamically with EF-G. The effects in H95 suggest that EF-G interacts weakly with H95 before mRNA translocation and strongly and more extensively with this helix following mRNA translocation.  相似文献   

10.
11.
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein 10) encodes an essential putative RNA helicase that is required for accurate ribosome biogenesis. Genetic depletion of Dbp10p results in a deficit in 60S ribosomal subunits and an accumulation of half-mer polysomes. Furthermore, pulse-chase analyses of pre-rRNA processing reveal a strong delay in the maturation of 27SB pre-rRNA intermediates into 25S rRNA and 7S pre-rRNA. Northern blot analyses indicate that this delay leads to higher steady-state levels of 27SB species and reduced steady-state levels of 7S pre-rRNA and 25S/5.8S mature rRNAs, thus explaining the final deficit in 60S subunit and the formation of half-mer polysomes. Consistent with a direct role in ribosome biogenesis, Dbp10p was found to be located predominantly in the nucleolus.  相似文献   

12.
The translocation stage of protein synthesis is a highly conserved process in all cells. Although the components necessary for translocation have been delineated, the mechanism of this activity has not been well defined. Ribosome movement on template mRNA must allow for displacement of tRNA-mRNA complexes from the ribosomal A to P sites and P to E sites, while ensuring rigid maintenance of the correct reading frame. In Escherichia coli, translocation of the ribosome is promoted by elongation factor G (EF-G). To examine the role of EF-G and rRNA in translocation we have characterized mutations in rRNA genes that can suppress a temperature-sensitive (ts) allele of fusA, the gene in E. coli that encodes EF-G. This analysis was performed using the ts E. coli strain PEM100, which contains a point mutation within fusA. The ts phenotype of PEM100 can be suppressed by either of two mutations in the decoding region of the 16S rRNA when present in combination with a mutation at position 2058 in the peptidyltransferase domain of the 23S rRNA. Communication between these ribosomal domains is essential for coordinating the events of the elongation cycle. We propose a model in which EF-G promotes translocation by modulating this communication, thereby increasing the efficiency of this fundamental process.  相似文献   

13.
Production of ribosomes is a fundamental process that occurs in all dividing cells. It is a complex process consisting of the coordinated synthesis and assembly of four ribosomal RNAs (rRNA) with about 80 ribosomal proteins (r-proteins) involving more than 150 nonribosomal proteins and other factors. Diamond Blackfan anemia (DBA) is an inherited red cell aplasia caused by mutations in one of several r-proteins. How defects in r-proteins, essential for proliferation in all cells, lead to a human disease with a specific defect in red cell development is unknown. Here, we investigated the role of r-proteins in ribosome biogenesis in order to find out whether those mutated in DBA have any similarities. We depleted HeLa cells using siRNA for several individual r-proteins of the small (RPS6, RPS7, RPS15, RPS16, RPS17, RPS19, RPS24, RPS25, RPS28) or large subunit (RPL5, RPL7, RPL11, RPL14, RPL26, RPL35a) and studied the effect on rRNA processing and ribosome production. Depleting r-proteins in one of the subunits caused, with a few exceptions, a decrease in all r-proteins of the same subunit and a decrease in the corresponding subunit, fully assembled ribosomes, and polysomes. R-protein depletion, with a few exceptions, led to the accumulation of specific rRNA precursors, highlighting their individual roles in rRNA processing. Depletion of r-proteins mutated in DBA always compromised ribosome biogenesis while affecting either subunit and disturbing rRNA processing at different levels, indicating that the rate of ribosome production rather than a specific step in ribosome biogenesis is critical in patients with DBA.  相似文献   

14.
The localization of r-protein mRNA in subcellular compartments has been analysed. It was observed that the mRNA for a representative r-protein (L1) is diffuse in the cytoplasm, as shown by in situ hybridization experiments and that the distribution of rp-mRNA between polysomes and light mRNPs changes during oogenesis. In early oogenesis this mRNA is found mostly in subpolysomal fractions, whereas at the beginning of vitellogenesis (stage II) it becomes associated with polysomes where it remains in a constant amount at later stages. Histone and calmodulin mRNA, on the contrary, are mostly associated with non-polysomal fast-sedimenting particles throughout oogenesis. This suggests that the partition of different classes of mRNA between polysomes, light mRNP and heavy particles depends on their nature and might be determined by different requirements for these mRNAs during oogenesis.  相似文献   

15.
An increase in the rate of protein synthesis in living cells can be achieved by regulating the quantity of mRNA, ribosomes, and enzymes available for translation or by regulating the efficiency at which existing components are used. Efficiency can be measured by comparing the number of ribosomes actively engaged in the synthesis of protein (polysomes) to the pool of free ribosomes. The objective of this study was to determine the percentage of ribosomes found as polysomes in C2C12 cells deprived of serum or exposed to insulin or dexamethasone 24 h before and after being stimulated to differentiate. Individual 60 mm culture dishes were exposed to serum-free control medium, medium containing serum, insulin, or dexamethasone for a period of 1 h or 2 h and then quickly frozen. The ribosomes and polysomes from these cells were separated by ultracentrifugation on 15 to 60% sucrose gradients and the absorbance across the gradient at 254 nm was recorded. Polysome percentages were determined as the area under the polysome peak divided by the total area under the curve. Serum deprivation caused a 12% decline in the percentage of ribosomes found as polysomes (P < 0.01). Dexamethasone caused a quadratic decline (P < 0.05) in polysome percentage, while insulin yielded a quadratic increase (P < 0.05). Protein synthesis assays measuring 3H-tyrosine uptake showed similar responses. These changes occurred in the absence of any differences in total RNA concentration. It was concluded that differentiation and the absence of serum in the media reduced the rate of recruitment of ribosomes for protein synthesis. Insulin increased ribosome recruitment which was also observed by a similar increase in incorporation of radio-labeled tyrosine.  相似文献   

16.
A unique GTP-binding protein, Der contains two consecutive GTP-binding domains at the N-terminal region and its homologues are highly conserved in eubacteria but not in archaea and eukaryotes. In the present paper, we demonstrate that Der is one of the essential GTPases in Escherichia coli and that the growth rate correlates with the amount of Der in the cell. Interestingly, both GTP-binding domains are required at low temperature for cell growth, while at high temperature either one of the two domains is dispensable. Result of the sucrose density gradient experiment suggests that Der interacts specifically with 50S ribosomal subunits only in the presence of a GTP analogue, GMPPNP. The depletion of Der accumulates 50S and 30S ribosomal subunits with a concomitant reduction of polysomes and 70S ribosomes. Notably, Der-depleted cells accumulate precursors of both 23S and 16S rRNAs. Moreover, at lower Mg2+ concentration, 50S ribosomal subunits from Der-depleted cells are further dissociated into aberrant 50S ribosomal subunits; however, 30S subunits are stable. It was revealed that the aberrant 50S subunits, 40S subunits, contain less ribosomal proteins with significantly reduced amounts of L9 and L18. These results suggest that Der is a novel 50S ribosome-associated factor involved in the biogenesis and stability of 50S ribosomal subunits. We propose that Der plays a pivotal role in ribosome biogenesis possibly through interaction with rRNA or rRNA/r-protein complex.  相似文献   

17.
《The Journal of cell biology》1984,99(6):2247-2253
A preparation of rat liver microsomes containing 70% of the total cellular endoplasmic reticulum (ER) membranes was subfractionated by isopycnic density centrifugation. Twelve subfractions of different ribosome content ranging in density from 1.06 to 1.29 were obtained and analyzed with respect to marker enzymes, RNA, and protein content, as well as the capacity of these membranes to bind 80S ribosomes in vitro. After removal of native polysomes from these microsomal subfractions by puromycin in a buffer of high ionic strength their capacity to rebind 80S ribosomes approached levels found in the corresponding native membranes before ribosome stripping. This indicates that in vitro rebinding of ribosomes occurs to the same sites occupied in the cell by membrane-bound polysomes. Microsomes in the microsomal subfractions were also tested for their capacity to effect the translocation of nascent secretory proteins into the microsomal lumen utilizing a rabbit reticulocyte translation system programmed with mRNA coding for the precursor of human placental lactogen. Membranes from microsomes with the higher isopycnic density and a high ribosome content showed the highest translocation activity, whereas membranes derived from smooth microsomes had only a very low translocation activity. These results indicate the membranes of the rough and smooth portions of the endoplasmic reticulum are functionally differentiated so that sites for ribosome binding and the translocation of nascent polypeptides are segregated to the rough domain of the organelle.  相似文献   

18.
19.
Messenger ribonucleoprotein particles in developing sea urchin embryos   总被引:4,自引:0,他引:4  
Messenger RNA entering polysomes during early development of the sea urchin embryo consists of both oogenetic and newly transcribed sequences. Newly transcribed mRNA enters polysomes rapidly while oogenetic mRNA enters polysomes from a pool of stable, nontranslatable messenger ribonucleoprotein particles (mRNPs) derived from the unfertilized egg. Protein content may relate to differences in the regulation of newly transcribed and oogenetic mRNAs. Oogenetic poly(A)+ mRNA was found to be present in both polysomal and subpolysomal fractions of cleavage stage and early blastula stage embryos. This mRNA was found to be present in subpolysomal mRNPs with a density of 1.45 g/cm3 in Cs2SO4. Poly(A)+ mRNPs released from polysomes of embryos cultured in the presence of actinomycin D sedimented in a broad peak centered at 55 S and contained RNA of 21 S. The density of these particles was sensitive to the method of release; puromycin-released mRNPs had a density of 1.45 g/cm3, while EDTA caused a shift in density to 1.55 g/cm3, indicating a partial loss of protein. The results with newly synthesized mRNAs contrast sharply. Newly transcribed mRNA in subpolysomal mRNPs had a density of 1.55–1.66 g/cm3, a density approaching that of deproteinized RNA. Messenger RNA released from polysomes either by EDTA or puromycin was examined to determine the possible existence of polysomal mRNPs. When [3H]uridine-labeled mRNA was released from late cleavage stage embryo polysomes by either technique, and centrifuged on sucrose gradients, two broad peaks were found. One peak centered at 30 S contained 21 S mRNA while the other at 15 S contained 9 S histone mRNA. When these fractions were fixed with formaldehyde, they banded on Cs2SO4 gradients at a density of 1.60–1.66 g/cm3, very similar to that of pure RNA. We conclude that the newly transcribed mRNA may be present in stable mRNPs containing up to 10% protein in either subpolysomal or polysomal fractions. These mRNPs are clearly distinguishable from the protein-rich mRNPs containing oogenetic mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号