首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The organization of the mitochondrial genome of B3, B4 and B5generations of hybrids created by backcrossing sterile wild beet Betamaritima with a fertile O-type sugar beet line was studied usingrestriction fragment length polymorphism (RFLP) analysis. Random amplifiedpolymorphic DNA (RAPD) analysis was used to study restoration of the fertile(O-type) sugar beet genotype in hybrids after multiple backcrossings.Restriction of mtDNAs from the cytoplasm of B. maritimaandhybrids revealed BamHI, EcoRI andXhoI restriction patterns different from those for sterileand fertile sugar beet lines. The most conspicuous feature of our accession ofsterile wild beet mtDNA was the absence of the 10.7-kbEcoRI fragment detected in the cytoplasm of S-type sterileB. maritima and sugar beet. The hybridization of digestedmtDNAs with coxII, atpA andatp6 homologous probes revealed alterations within thesegene loci that distinguished wild beet and hybrids from sugar beets.Characteristic hybridization profiles for the wild beet and B3, B4 and B5hybrids were observed for all probes regardless of the restrictase used todigest mtDNA. Notable changes in atpA andatp6 genes resulted when probes that comprised the5flanking sequences of these genes and a small part of the coding sequences wereused. RFLP analysis of the sterile B. maritimamitochondrial genome further supported the unique character of this source ofwild beet sterility. The genotypic differences between hybrids and parentalaccessions were determined by scoring PCR-RAPD reaction products for nineselected primers. The diversity of the B. maritimagenotyperesulted in a lower genetic similarity index in comparison with hybrids,sterileand fertile lines of sugar beet. The dendrogram obtained after cluster analysisdistinguished hybrids as a group that differed from wild beet and themaintainersugar beet line used for backcrossing. These results may indicate incompleterestoration of the fertile sugar beet genotype in hybrids.  相似文献   

2.
Summary Among the fertile sugar beet lines with nuclear sterility maintenance genes, rf, in a homozygous recessive state, sublines capable of reverting spontaneously at a high rate to sterility were identified. Of 24 related fertile sublines studied, 6 were found to spontaneously revert to sterility with a frequency of about 19%. Genetic analysis confirmed the cytoplasmic nature of spontaneously arising sterility. Reversion to sterility in these sublines was accompanied by alterations in the mitochondrial genome structure: loss of the autonomously replicating minicircle c (1.3 kb) and changes in the restriction patterns of high-molecular-weight mitochondrial DNA (mtDNA). Southern hybridixation analysis with cloned minicircle c as a probe revealed no integration of this DNA molecule into the main mitochondrial and nuclear genomes of the revertants. Comparative BamHI and EcoRI restriction analysis of the mtDNA from the sterile revertants and fertile parental subline showed that the spontaneous reversion is accompanied by extensive genomic rearrangement. Southern blot analysis with cloned -subunit of F1-ATPase (atpA) and cytochrome c oxidase subunit II (COX II) genes as probes indicated that the changes in mtDNA accompanying spontaneous reversion to sterility involved these regions. The mitochondrial genomes of the spontaneous revertants and the sterile analogue were shown to be identical.  相似文献   

3.
Summary Male sterile plants appeared in the progeny of three fertile plants obtained after one cycle of protoplast culture from a fertile botanical line and two androgenetic lines ofNicotiana sylvestris. These plants showed the same foliar and floral abnormalities as the cytoplasmic male sterile (cms) mitochondrial variants obtained after two cycles of culture. We show that male sterility in these plants is controlled by three independent nuclear genes,ms1, ms2 andms3, while no changes can be seen in the mitochondrial genome. However, differences were found between thein organello mitochondrial protein synthesis patterns of male sterile and parent plants. Two reproducible changes were observed: the presence of a new 20 kDa polypeptide and the absence of a 40 kDa one. Such variations were described previously in mitochondrial protein synthesis patterns of the cms lines. Fertile hybrids of male sterile plants showed normal synthesis patterns. The male sterile plants are thus mutated in nuclear genes involved in changes observed in mitochondrial protein synthesis patterns.  相似文献   

4.
Summary Mitochondrial DNA (mtDNA) from fertile (N) and possibly new cytoplasmic male sterile (CMS) genotypes was studied in the sugar beet Beta vulgaris L. It was found by restriction endonuclease analysis that BMC-CMS, a cytoplasm that was derived from the wild beet Beta maritima, contained a unique type of mtDNA which is distinguishable from both the N and S-CMS, the only other CMS genotype that is currently availabe in B. vulgaris L. The organization of three genes: coxI, coxII and cob, was analyzed by hybridization with heterologous probes from maize. These genes have a similar structure in N and BMC-CMS that is different from S-CMS. It is concluded that BMC-CMS is a novel CMS genotype in the sugar beet.  相似文献   

5.
Hybrid combinations of inbred sugar beet lines that undergo conversion of N-cytoplasm into S-state were screened for the marker mitochondrial genes atpA and atp6. The involvement of nuclear factors into cytoplasm conversion and possible identity of these factors in different lines have been studied. The cytoplasm conversion factor was localized to nucleus. In different lines with cytoplasm conversion, the nuclear conversion factors are not identical. The state of the mitochondrial genome is normalized after outcrosses with plants having the stable cytoplasm.  相似文献   

6.
Summary Chloroplast (ct) and mitochondrial (mt) DNAs from four cytoplasmic male sterile (cms) and 22 normal fertile sugar beet lines and accessions of wild beets from the genusBeta have been compared with restriction analyses and Southern hybridizations. We have used restriction analyses of ctDNA as a phylogenetic marker to confirm the taxonomic relationships between the different cytoplasms. According to the ctDNA data, all four cms cytoplasms belong to the same taxonomic section,Beta. Restriction patterns of ct and mtDNA from fertile accessions produced analogous trees of similarity and showed a close correlation between the organellar DNA diversity and the accepted taxonomic classification of the species studied. However, the mtDNA restriction profiles of the four cms types differed dramatically from each other and from those of all fertile accessions from the genus. No indication of cytoplasmic introgression was found in any of the four investigated cms types. Southern hybridization to mtDNA revealed variant genomic arrangements in the different fertile and cms cytoplasms, indicating that rearrangement of the mitochondrial genome is a common denominator to the different cms systems inBeta. It may, indeed, be a common property to spontaneously occurring cms in all or most species.  相似文献   

7.
Summary Previous RFLP-analysis of mtDNA isolated from different lines and cultivars of Vicia faba with respect to variability of the coxII gene revealed two types of mitochondrial genome: one with a normal coxII gene and the other with both normal coxII and chimeric coxII-orf192 genes. In this study we analyzed other regions of these two types of mitochondrial genome and found significant differences in the arrangement of regions around the coxII, coxIII, cob, rrn26 and atpA genes. More detailed analysis of the rrn26 and atpA gene regions showed that these genes are associated with recombinationally active repeats. Restriction maps of the rrn26 and atpA gene regions in different recombinative variants are presented.  相似文献   

8.
9.
Summary Techniques have been developed for the production of cybrids in Lolium perenne (perennial ryegrass). Gamma-irradiated protoplasts of a cytoplasmically male-sterile breeding line of perennial ryegrass (B200) were fused with iodoacetamide-treated protoplasts of a fertile breeding line (Jon 401). After fusion 25 putative cybrid calli were characterized to determine mitochondrion type and composition of the nuclear genome. Analysis of phosphoglucoisomerase isozyme profiles and determination of the ploidy level by flow cytometry indicated that all of the calli tested essentially contained the nuclear DNA of the fertile line. However, the presence of parts of the nuclear DNA from the sterile line could not be excluded. Southern blotting of total DNA isolated from the parental lines and putative cybrids combined with hybridizations using the mitochondrial probes cox1 and atp6 revealed that the mitochondria of the calli originated from the fertile line (5 calli), the sterile line (5 calli) or from both parental lines (15 calli). The hybridization patterns of the mtDNA from the cybrid calli showed extensive quantitative and qualitative variation, suggesting that fusion-induced inter- or intramolecular mitochondrial recombination had taken place.  相似文献   

10.
Summary Plants of two natural populations of Beta maritima, characterized by high percentages of male-sterile plants, have been investigated for organelle DNA polymorphism. We confirm the two classes of mitochondrial DNA variation previously described: (i) mitochondrial DNA (mtDNA) type N is associated with male fertility, whereas mtDNA type S can cause cytoplasmic male sterility (CMS); (ii) the 10.4-kb linear plasmid is observed in both types of mitochondria and is not correlated with the cytoplasmic male sterility occurring in this plant material. A third polymorphism is now described for chloroplast DNA (ctDNA). This polymorphism occurs within single populations of Beta maritima. Three different ctDNA types have been identified by HindIII restriction analysis. Among the plants studied, ctDNA type 1 is associated with N mitochondria and type 2 with S mitochondria. Chloroplast DNA type 3 has been found both in a fertile N plant and in a sterile S plant. This finding suggests that the chloroplast DNA polymorphism reported is not involved in the expression of male sterility. A comparison with Beta vulgaris indicates that ctDNA type 3 of Beta maritima corresponds to the ctDNA of fertile sugar beet maintainer lines. The three types of Beta maritima ctDNA described in this study differ from the ctDNA of male-sterile sugar beet.  相似文献   

11.
12.
Summary We have cloned three distinct nuclear genes, NAM1, NAM7, and NAM8, which alleviate mitochondrial intron mutations of the cytochrome b and COXI (subunit I of cytochrome oxidase) genes when present on multicopy plasmids. These nuclear genes show no sequence homology to each other and are localized on different chromosomes: NAM1 on chromosome IV, NAM7 on chromosome XIII and NAM8 on chromosome VIII. Sequence analysis of the NAM1 gene shows that it encodes a protein of 440 amino acids with a typical presequence that would target the protein to the mitochondrial matrix. Inactivation of the NAM1 gene by gene transplacement leads to a dramatic reduction of the overall synthesis of mitochondrial protein, and a complete absence of the COXI protein which is the result of a specific block in COXI pre-mRNA splicing. The possible mechanisms by which the NAM1 gene product may function are discussed.  相似文献   

13.
14.
The purpose of this research is to identify the probable mitochondrial factor associated with cytoplasmic male sterility (cms) by comparative analysis of cms and its isogenic maintainer lines in stem mustards. Dramatic variations in the morphology of floral organs were observed in cms stem mustard. Mitochondrial atpA gene was shown to be altered in cms compared with that in its maintainer line, of which mitochondrial atpA gene from its maintainer line was sequenced to encode 507 amino acids. It was indicative of high homology with mitochondrial atpA genes from other species, even as high as 94% in similarity with Oryza sativa in terms of amino acid constituents. However, only 429 amino acids were deduced in cms showing 83% similarity with atpA gene from its maintainer line. Two copies were observed in its maintainer line, but only one was found in cms. Such numerous differences of mitochondrial atpA gene between cms and its maintainer lines may not be the results of evolutionary divergence but the rearrangements of mitochondria. Expression of mitochondrial atpA gene was shown to be down-regulated in cms by using Northern blot. Consequently, mitochondrial ATP synthesis was severely decreased more than one fold in cms stem mustard indicating deficiency in mitochondrial ATP synthesis in this type of cms. Therefore, we deduced that mitochondrial atpA gene altered in cms could be associated with male-sterility in this type of cms. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Jing-Hua Yang and Yan Huai contributed equally to this work.  相似文献   

15.
Summary Variation in mitochondrial genome organization and expression between male fertile and sterile nuclear-cytoplasmic combinations of sorghum has been examined. Cytoplasmic genotypes were classified into eleven groups on the basis of restriction endonuclease digestion of mitochondrial DNA (mtDNA) and five groups on the basis of mitochondrial translation products. These cytoplasms were further characterized by hybridization of specific gene probes to Southern blots of EcoRI digested mtDNA, and identification of the fragment location of four mitochondrial genes. Variation was observed in the genomic location and copy number of the F1 ATPase -subunit gene, as well as the genomic location and gene product of the cytochrome c oxidase subunit I gene. The effect of nuclear genotype on mitochondrial genome organization, expression and the presence of two linear plasmid-like mtDNA molecules was examined. Our results indicate that nuclear-mitochondrial interactions are required for regulation of mitochondrial gene expression. When a cytoplasm is transferred from its natural to a foreign nuclear background some changes in the products of in organello mitochondrial protein synthesis occur. In a number of cytoplasmic genotypes these changes correlate with the expression of cytoplasmic male sterile phenotype, suggesting a possible molecular basis for this mutation.  相似文献   

16.
Summary The induction, growth and regeneration of sugar beet callus to whole plants were all found to be highly genotype-specific. Regenerants of one line (of sterile cytoplasm) were obtained and a study of the chloroplast and mitochondrial DNA in these somaclones was undertaken by gel electrophoresis and cosmid hybridization. In one somaclone a rearrangement in the mitochondrial genome was observed; the novel arrangement of this part of the genome was identical to the corresponding area of the genome of the normal cytoplasm though it was otherwise of sterile type. This suggests that mitochondrial DNA may have a propensity to undergo certain types of rearrangement.  相似文献   

17.
The complete nucleotide sequence (501,020 bp) of the mitochondrial genome from cytoplasmic male-sterile (CMS) sugar beet was determined. This enabled us to compare the sequence with that previously published for the mitochondrial genome of normal, male-fertile sugar beet. The comparison revealed that the two genomes have the same complement of genes of known function. The rRNA and tRNA genes encoded in the CMS mitochondrial genome share 100% sequence identity with their respective counterparts in the normal genome. We found a total of 24 single nucleotide substitutions in 11 protein genes encoded by the CMS mitochondrial genome. However, none of these seems to be responsible for male sterility. In addition, several other ORFs were found to be actively transcribed in sugar beet mitochondria. Among these, Norf246 was observed to be present in the normal mitochondrial genome but absent from the CMS genome. However, it seems unlikely that the loss of Norf246 is causally related to the expression of CMS, because previous studies on mitochondrial translation products failed to detect the product of this ORF. Conversely, the CMS genome contains four transcribed ORFs (Satp6presequence, Scox2-2 , Sorf324 and Sorf119) which are missing from the normal genome. These ORFs, which are potential candidates for CMS genes, were shown to be generated by mitochondrial genome rearrangements.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. Hagemann  相似文献   

18.
Summary Methods are described whereby hybridization of mitochondrial (mt) DNA with different DNA probes can definitely distinguish male-fertile and and male-sterile (cms) cytoplasms of sugar beet Beta vulgaris L. We have developed two types of miniassays. (1) Comparative methods requiring the isolation and restriction of total cellular DNA, hybridization with cloned mtDNA fragments from either fertile or male-sterile cytoplasms, and comparison of the hybridization patterns to the fertile-and sterile-specific patterns of mtDNA of sugar beet for the given mtDNA probe. For these analyses, we routinely used 1 g of plant material to determine the type of cytoplasm. (2) Noncomparative (plus-minus) methods requiring neither the isolation of pure DNA nor restriction, electrophoresis, or Southern blotting. Instead, alkaline-SDS plant extracts from as little as 50 mg of plant material were dot-blotted and hybridized with fertile-specific (mitochondrial minicircular DNA) and/or cms-specific probes (consisting of a 2.3-kb mtDNA sequence exclusively occurring in the cms cytoplasm). The assays are simple to perform, give definitive results, are nonde-structive to the plants, and may be used in mass screening of sugar beet populations for hybrid production or in in vitro culture processes.  相似文献   

19.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

20.
Summary Individual plants of a Japanese onion variety Sapporo-ki, which is characterized by the occasional occurrence of male-sterile plants, have been investigated for mitochondrial (mt) DNA polymorphism. Male-fertile and the Jones' cytoplasmic male-sterile (CMS) onions were also included for comparison. Southern blot hybridization with rrn26, cox-I, cox-II, cob, atpA and atp9 genes as probes revealed the two classes of mtDNA variation within a population of Sapporo-ki: Out of the 41 plants examined 19 contained mtDNA typical of malefertile plants, and 22 individuals contained mtDNA typical of the Jones' CMS genotype. Our results thus indcate that the use of the mitochondrial gene probes may greatly facilitate the classification of individual plants by cytoplasmic genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号