首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercially available alpha-amylase derived from Bacillus licheniformis contained an enzymatic activity able to degrade the inner portion or framework of the cell wall of Chlamydomonas reinhardtii. Both the wall-degrading activity and the contaminating protease were destroyed by heating the alpha-amylase preparation at 90 degrees C for 30 min. Since the alpha-amylase activity was uneffected by heat treatment, we conclude that it was not the alpha-amylase but the contaminating protease in the preparation that was responsible for the cell wall-degrading activity.  相似文献   

2.
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N'-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher alpha-amylaseactivity than the parent strain under submerged culture at 30 degrees C for 24 h. About 70% of the total alpha-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable alpha-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable alpha-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal alpha-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.  相似文献   

3.
Plasma membrane was isolated from Streptococcus cremoris using mutanolysin from a streptomycete as the cell wall-degrading enzyme and phenylmethylsulfonyl fluoride as protease inhibitor. The specific activity of membrane-bound enzyme, adenosine triphosphatase (ATPase), was 4 μmol/mg protein per min, which was 5–10 times higher than the activity found in other fractions obtained during the isolation procedure. The number of polypeptides in the plasma membrane was approximately 50 with molecular weights 13 500–100 000, minor changes in the polypeptide pattern were observed when the plasma membrane was isolated without a protease inhibitor. The chemical composition of the membrane preparation was 49.7% protein, 21.9% lipid, 5.1% aminosugars, 17.3% RNA and 0.03% DNA. Electron microscopic examination confirmed the membrane to be practically devoid of cell wall components. Our results indicate that the membrane integrity is well retained and therefore the membrane preparation is suitable for detailed studies on vectorial metabolism and its enzymes, e.g. ATPase.  相似文献   

4.
Commercial enzyme preparations frequently used in the preparation of fungal cell walls, viz., proteases, a lipase, and a phosphatase, were examined for the presence of contaminating glycohydrolase activity, since such activity could result not only in the removal of cytoplasmic constituents but also in the removal of portions of the wall itself. Glucosidase activities were detected in a protease of fungal origin, in a lipase from wheat germ, and in a phosphatase from potatoes. Additionally, two commercial protease preparations from Streptomyces griseus contained β-1,3-glucanase activity in significant amounts, a third contained trace amounts of the glucanase, but a fourth was totally free of glycohydrolase activity. The protease preparations from S. griseus released laminaribiose from yeast-phase cell walls of Histoplasma capsulatum chemotypes I and II, but only trace amounts of glucose were released. One protease was examined more closely and was found to be optimally active on laminarin at pH 5.5 and 50°C. It was also highly active on the same substrate at pH 8.0 and 37°C, however. A protease preparation from Aspergillus oryzae released glucose from the yeast-phase cell walls of H. capsulatum chemotypes I and II as well as from cell walls of Blastomyces dermatitidis, suggesting that the preparation contained both α- and β-glucanases.  相似文献   

5.
A mutant of Bacillus subtilis 6160 that had been isolated by its hyperproduction of alpha-amylase and protease lacked flagella and motility, and its content of autolytic enzyme(s) was reduced to one-third to one-fourth that of the parent. These phenotypic differences were completely co-transferred by the deoxyribonucleic acid (DNA) of the mutant when five DNA recipient strains of B. subtilis were transformed. The revertants, isolated by motility with a frequency of approximately 10(-7), recovered a normal level of autolytic activity and showed reduced productivity of alpha-amylase and protease. This point mutation allowed normal flagellin synthesis, spore formation, and rate of growth. The comparison of cell envelope of the mutant with that of the parent indicated that there was no significant difference except loss of flagella. Therefore the association at the cell surface of a group of extracellular proteins consisting of alpha-amylase, proteases, flagellin, and autolytic enzymes(s) seem to be coordinately regulated by the gene or seem to be affected coordinately by certain undetected alterations of the cell envelope.  相似文献   

6.
A procedure is described for the purification of a neutral protease from fermentation broths of Vibrio proteolyticus. The key feature of the purification scheme is the selective, irreversible inactivation of a contaminating exoenzyme, aminopeptidase, by alkali treatment, rather than removal of this enzyme by conventional chromatographic methods. Fermentation broths or concentrates were brought to pH 11.5 to 11.7 by Na2CO3-NaOH addition and incubated at 25 degrees C until aminopeptidase activity was diminished. The alkali treatment resulted in greater than 99% reduction of aminopeptidase activity with minimal loss of neutral protease activity. The neutral protease could be further purified to apparent homogeneity by QA-52 cellulose chromatography. The alkali treatment of fermentation concentrates was also useful for preparation of V. proteolyticus neutral protease to effect the coupling of N-protected aspartic acid and phenylalanine methyl ester for the production of N-aspartylphenylalanine methyl ester, a precursor for the sweetener aspartame.  相似文献   

7.
A procedure is described for the purification of a neutral protease from fermentation broths of Vibrio proteolyticus. The key feature of the purification scheme is the selective, irreversible inactivation of a contaminating exoenzyme, aminopeptidase, by alkali treatment, rather than removal of this enzyme by conventional chromatographic methods. Fermentation broths or concentrates were brought to pH 11.5 to 11.7 by Na2CO3-NaOH addition and incubated at 25 degrees C until aminopeptidase activity was diminished. The alkali treatment resulted in greater than 99% reduction of aminopeptidase activity with minimal loss of neutral protease activity. The neutral protease could be further purified to apparent homogeneity by QA-52 cellulose chromatography. The alkali treatment of fermentation concentrates was also useful for preparation of V. proteolyticus neutral protease to effect the coupling of N-protected aspartic acid and phenylalanine methyl ester for the production of N-aspartylphenylalanine methyl ester, a precursor for the sweetener aspartame.  相似文献   

8.
The digestive enzyme profile (total protease, total carbohydrase, alpha-amylase and alpha-glucosidase activity and capacity) along the digestive tract was investigated in vitro at different temperature levels (5, 18, 25 and 37° C) for the only Mediterranean species of parrotfish Sparisoma cretense . Sparisoma cretense (collected from the wild from south-eastern Greece) exhibited very high potential for carbohydrate digestion, as well as relatively increased potential for protein digestion. Total protease activity and capacity was increased especially at neutral and alkaline pH levels and was similar in the anterior and posterior intestine. Total carbohydrase, alpha-amylase and alpha-glucosidase values were quite elevated at 37° C but relatively low at 5, 18 and 25° C. Total carbohydrase and alpha-amylase capacity in the posterior intestine became increasingly important with elevated temperature, while the opposite was apparent for α-glucosidase. These results suggest that, apart from the expected high potential for carbohydrate digestion exhibited, S. cretense also has the elevated capacity for protein digestion, although it lacks a specialized stomach and pyloric caeca.  相似文献   

9.
A method was developed to eliminate the proteases contaminating commercial DNase I, which can cause degradation of target protein during the purification process. Bio Basic DNase stock solution (in Tris–HCl buffer [pH 8.0] containing 5 mM CaCl2) was first incubated at 50 °C to generate autolysis of proteases and zymogens, leading to a significant reduction in protease activity while preserving DNase activity. The residual protease activity was completely inhibited by further incubation with 2 mM PMSF (phenylmethylsulfonyl fluoride) or 2× S8830 inhibitor cocktail. This approach could be readily applicable to eliminate the protease activity in any DNase products or during the preparation of commercial DNase.  相似文献   

10.
An artificially inserted extra peptide (21 amino acid peptide) between the B. subtilis alpha-amylase signal peptide and the mature thermostable alpha-amylase was completely cleaved by B. subtilis alkaline protease in vitro. The cleavage to form a mature enzyme was observed between pH 7.5 and 10, but not between pH 6.0 and 6.5, although a similar protease activity toward Azocall was observed between pH 6.0 and 7.5. To analyze the effects of pH on the cleavage, CD spectra at pH 6, 8, and 11 of the NH2-terminally extended thermostable alpha-amylase were analyzed and the results were compared with those of the mature form of the alpha-amylase. It is suggested that the cleavage of the NH2-terminally extended peptide is controlled by the secondary and tertiary structure of the precursor enzyme. Similar cleavage of different NH2-terminally extended peptides by the alkaline protease was also found in other hybrid thermostable alpha-amylases obtained.  相似文献   

11.
Mutants that had a genetic lesion increasing the production of alpha-amylase and protease simultaneously were isolated from a transformable strain of Bacillus subtilis Marburg by N-methyl-N'-nitro-N-nitrosoguanidine treatment. These mutants produced two to three times more alpha-amylase and five to 16 times more protease than their parent and were tentatively referred to as AP mutants. As this mutation seems to have occurred at a single gene of the bacterial chromosome and was not located near the alpha-amylase structural gene, the gene was designated as "pap." When pap- and amyR2 (an alpha amylase regulator gene) or pap- and ProH coexisted in the same cell, synergistic effects of the two genetic characters were observed on the alpha-amylase and protease production, respectively. Upon introduction of the pap mutation, the following phenotypic changes were observed in addition to changes in alpha-amylase and protease productivity. (i) Mutants lost the character of competence for the transformation. (ii) When cells were cultured at 30 C for 30 h, mutant cells became filament owing to the formation of chains of cells. (iii) Autolysis of cells was decreased in the mutants. When pap- was transferred to the wild strain by deoxyribonucleic acid-mediated transformation, the transformants showed all these phenotypic alterations simultaneously.  相似文献   

12.
The purification of industrial alpha-amylase by liquid-liquid extraction with Aliquat 336 reversed micellar solution as the extractant was studied. Seven kinds of Aliquat 336 reversed micellar solution, formed by using seven kinds of straight chain alkyl alcohols as cosolvent, have been utilized to extract industrial a-amylase. It was found that these seven kinds of reversed micellar solution can all achieve a high protein transfer efficiency in the forward extraction process. After a full forward and backward extraction cycle, however, only the reversed micelles with n-butanol as the cosolvent was found to be able to maintain the activity of alpha-amylase in the stripping solution. By using the reversed micelles of Aliquat 336/isooctane/1% (v/v) n-butanol to perform a full extraction cycle, it was found that 85% of the total activity of alpha-amylase in the industrial a-amylase could be recovered at the end of an extraction cycle and the specific activity of alpha-amylase could be concentrated about 1.5-fold; meanwhile, most of the neutral protease in the industrial a-amylase could be removed. The separation factor of alpha-amylase to neutral protease at the end of an extraction cycle can reach about 10. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
The subcellular distribution of the enzymes alpha-amylase, protease and ribonuclease in wheat aleurone layers after treatment with gibberellic acid was determined by differential centrifugation. Of the alpha-amylase 56% was precipitable from cell homogenates, indicating that it is a particulate enzyme. Similar results were recorded with protease. Particulate alpha-amylase showed distinct structural latency, and membrane-rupturing mechanical or chemical treatments were required to release the enzyme in an active form; the results were completely analogous to results with lysosomal enzymes found in animal tissues. The identification of the hormonally induced enzymes as lysosomal suggests that the hormonal mechanism may be more closely associated with extracellular enzyme synthesis rather than with nucleic acid metabolism.  相似文献   

14.
Plant growth-promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. A total of 216 phosphate-solubilizing bacterial isolates were isolated from different rice rhizospheric soil in Northern Thailand. These isolate were screened in vitro for their plant growth-promoting activities such as solubilization of inorganic phosphate, ammonia (NH3), catalase and cell wall-degrading enzyme activity. It was found that 100% solubilized inorganic phosphate, 77.77% produced NH3 and most of the isolates were positive for catalase. In addition, some strains also produced cell wall-degrading enzymes such as protease (7%), chitinase (1%), cellulase (3%) and β-glucanase (3%), as evidenced by phenotypic biochemical test and quantitative assay using spectrophotometry. The isolates could exhibit more than two or three plant growth-promoting (PGP) traits, which may promote plant growth directly or indirectly or synergistically. Part of this study focused on the effect of NaCl, temperature, and pH on a specific the bacterial isolate Acinetobacter CR 1.8. Strain CR 1.8 was able to grow on up to 25% NaCl, between 25 and 55°C, and at pH 5–9. Maximum solubilization of tricalcium phosphate and aluminium phosphate was obtained at neutral pH, and 37°C. Strain CR 1.8 had protease activity but no cellulase, β-glucanase and cellulase activities.  相似文献   

15.
The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances alpha-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing alpha-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in alpha-amylase production seen in the affected strain.  相似文献   

16.
The production of extracellular alpha-amylase and protease by protoplasts of Bacillus amyloliquefaciens has been achieved. The production of enzymically active protease was totally dependent on a high concentration of either Mg2+, Ca2+, or spermidine, but production of active alpha-amylase was not. This cation dependence of protease production was seen immediately upon addition of lysozyme to intact cells. The cations could prevent the inactivation of protease and alter the cytoplasmic membrane configuration of protoplasts. Production of active alpha-amylase and protease by protoplasts was totally inhibited by proteolytic enzymes such as trypsin, alpha-chymotrypsin, or the organism's purified extracellular protease. The evidence suggests that these degradative enzymes act specifically on the emerging polypeptide of the extracellular enzyme and that the polypeptide emerges in a conformation different from that of the native molecule.  相似文献   

17.
Controlling the concentration of dissolved oxygen is a standard feature in aerobic fermentation processes but the measurement of dissolved CO2 concentrations is often neglected in spite of its influence on the cellular metabolism. In this work room air and room air supplemented with 5% and 10% carbon dioxide were used for aeration during the cultivation of the thermophilic microorganism Bacillus caldolyticus (DSM 405) on starch to produce alpha-amylase (E.C. 3.2.1.1) and neutral protease (E.C. 3.4.24.27/28). The increased CO2 concentrations resulted in a 22% raise in activity of secreted alpha-amylase and a 43% raise in protease activity when compared with aeration with un-supplemented room air. There was no effect on the final biomass concentration. Furthermore, the lag-phase of fermentation was reduced by 30%, further increasing the productivity of alpha-amylase production. Determinations of dissolved CO2 in the culture broth were conducted both in situ with a probe as well as using exhaust gas analysis and both the methods of quantification showed good qualitative congruence.  相似文献   

18.
In this report, alpha-Amylase originating from Bacillus subtilis (liquefying type) was immobilized on partially imidoesterized polyacrylonitrile (PAN) by covalent bonding. For the preparation of immobilized alpha-amylase, which has a high activity and high stability to repeated use, the optimum conditions for the preparation reaction were investigated. The optimum conditions for the preparation reaction were quantified on the basis of the enzymatic activity, the preservation of the activity during repeated use in batch process and the protein content on the support. Further-more, enzymatic properties of immobilized alpha-amylase prepared at optimum conditions were compared with the native enzyme. The optimum temperature and reaction time for the imidoes-terification reaction were 30 degrees c and 6 h, respectively, whereas those of the amidinatin reaction were 30-40 degrees C and more than 3 h, respectively; the optimum pH range was 9-10. Immobilized alpha-amylase prepared at the optimum conditions was very stable against the repeated use and had more than 90% of relative to activity of the first use after the tenth procedure. The initial reaction rate of immobilized alpha-amylase was lower than native alpha-amylase, but same amount of reducing sugars were produced after the reaction passed for more than 90 min. The immobilized alpha-amylase was less stabel at the high temperature and the more basic media. However, after long incubation time, immobilized alpha-amylase was more stable than the native enzyme in exposure to heat and a storng base.  相似文献   

19.
Using auxin-responsive diploid strains of Saccharomyces cerevisiae and S. ellipsoideus, we studied the role of cell wall-degrading enzymes in the auxin-induced cell expansion. Highly purified fungal β-l,3-glucanase added to cell suspension caused cell expansion in these strains. The cell expansion induced by auxin was inhibited by the addition of õ-glucono-lactone, which inhibited the activity of a crude β-l,3-gluca-nase preparation from yeast in a competitive manner. Laminarinase activity was significantly higher in the extract from auxin-treated yeast cells than in the extract of cells not treated with auxin. These results support the idea that auxin induces expansion of yeast cells of certain strains through enhancement of the activity of wall polysaccharide-degrading enzymes.  相似文献   

20.
Pyrococcus woesei (DSM 3773) alpha-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)alpha-amyl and pYTB2alpha-amyl vectors obtained were used for expression of thermostable alpha-amylase or fusion of alpha-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of alpha-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation-they exhibit only 35% of total cell activity-and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable alpha-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75 degrees C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95 degrees C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90 degrees C and 110 degrees C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120 degrees C. Maltose was the main end product of starch hydrolysis catalyzed by this alpha-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号