首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
The secretory pathway is of vital importance for eukaryotic cells and has a pivotal role in the synthesis, sorting, processing and secretion of a large variety of bioactive molecules involved in intercellular communication. One of the key processes in the secretory pathway concerns the transport of cargo proteins from the ER (endoplasmic reticulum) to the Golgi. Type‐I transmembrane proteins of ~24 kDa are abundantly present in the membranes of the early secretory pathway, and bind the COPI and COPII coat complexes that cover vesicles travelling between the membranes. These p24 proteins are thought to play an important role in the selective transport processes at the ER—Golgi interface, although their exact functioning is still obscure. One model proposes that p24 proteins couple cargo selection in the lumen with vesicle coat recruitment in the cytosol. Alternatively, p24 proteins may furnish subcompartments of the secretory pathway with the correct subsets of machinery proteins. Here we review the current knowledge of the p24 proteins and the various roles proposed for the p24 family members.  相似文献   

2.
The organelles within secretory and endocytotic pathways in mammalian cells have acidified lumens, and regulation of their acidic pH is critical for the trafficking, processing and glycosylation of cargo proteins and lipids, as well as the morphological integrity of the organelles. How organelle lumen acidification is regulated, and how luminal pH elevation disturbs these fundamental cellular processes, is largely unknown. Here, we describe a novel molecule involved in Golgi acidification. First, mutant cells defective in Golgi acidification were established that exhibited delayed protein transport, impaired glycosylation and Golgi disorganization. Using expression cloning, a novel Golgi-resident multi-transmembrane protein, named Golgi pH regulator (GPHR), was identified as being responsible for the mutant cells. After reconstitution in planar lipid bilayers, GPHR exhibited a voltage-dependent anion-channel activity that may function in counterion conductance. Thus, GPHR modulates Golgi functions through regulation of acidification.  相似文献   

3.
The unexpected discovery of a transport pathway from the Golgi to the endoplasmic reticulum (ER) independent of COPI coat proteins sheds light on how Golgi resident enzymes and protein toxins gain access to the ER from as far as the trans Golgi network. This new pathway provides an explanation for how membrane is recycled to allow for an apparent concentration of anterograde cargo at distinct stages of the secretory pathway. As signal-mediated COPI-dependent recycling also involves the concentration of resident proteins into retrograde COPI vesicles, the main bulk of lipids must be recycled, possibly through a COPI-independent pathway.  相似文献   

4.
The transport of proteins and lipids between the endoplasmic reticulum and Golgi apparatus is initiated by the collection of secretory cargo from within the lumen of the endoplasmic reticulum. Subsequently, transport carriers are formed that bud from this membrane and are transported to, and subsequently merge with, the Golgi. The principle driving force behind the budding process is the multi-subunit coat protein complex, COPII. A considerable amount of information is now available regarding the molecular mechanisms by which COPII components operate together to drive cargo selection and transport carrier formation. In contrast, the precise nature of the transport carriers formed is still a matter of considerable debate. Vesicular and tubular carriers have been characterized that are, or in other cases are not, coated with the COPII complex. Here, we seek to integrate much of the data surrounding this topic and try to understand the mechanisms by which vesicular and/or tubular carriers might be generated.  相似文献   

5.
Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I-mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.  相似文献   

6.
Recent studies have questioned the idea that the Golgi complex is a stable organelle with a unique identity through which secretory cargo is transported by vesicles. Instead, it is proposed that Golgi apparatus proteins continuously recycle via the endoplasmic reticulum by vesicle transport, whereas cargo molecules remain in maturing cisternal structures. Rather than forming a rigid matrix, structural Golgi proteins might be highly dynamic and recycle via the cytoplasm. I will discuss the evidence for these claims and consider whether or not they really disprove older ideas on how the Golgi apparatus is structured and performs its function.  相似文献   

7.
The trans‐Golgi network (TGN) is a major sorting, packing and delivering station of newly synthesised proteins and lipids to their final destination. These cargo molecules follow the secretory pathway, which is a vital part of cellular trafficking machinery in all eukaryotic cells. This secretory pathway is well conserved in all eukaryotes from low‐level eukaryotes, such as yeast, to higher level eukaryotes like mammals. The molecular mechanisms of protein sorting by adaptor proteins, membrane elongation and transport to the final destinations by motor proteins and the cytoskeleton, and membrane pinching‐off by scission proteins must be choreographically managed for efficient cargo delivery, and the understanding of these detailed processes is not yet completed. Functionally, defects in these mechanisms are associated with the pathology of prominent diseases such as acute myeloid leukaemia, Charcot–Marie–Tooth disease, I‐cell disease and Wiskott–Aldrich syndrome. The present review points out the recent advances in our knowledge of the molecular mechanisms involved in the transportation of the cargo from the TGN towards the endosome.  相似文献   

8.
Rapidly cycling proteins of the early secretory pathway can operate as cargo receptors. Known cargo receptors are abundant proteins, but it remains mysterious why their inactivation leads to rather limited secretion phenotypes. Studies of Surf4, the human orthologue of the yeast cargo receptor Erv29p, now reveal a novel function of cargo receptors. Surf4 was found to interact with endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53 and p24 proteins. Silencing Surf4 together with ERGIC-53 or silencing the p24 family member p25 induced an identical phenotype characterized by a reduced number of ERGIC clusters and fragmentation of the Golgi apparatus without effect on anterograde transport. Live imaging showed decreased stability of ERGIC clusters after knockdown of p25. Silencing of Surf4/ERGIC-53 or p25 resulted in partial redistribution of coat protein (COP) I but not Golgi matrix proteins to the cytosol and partial resistance of the cis-Golgi to brefeldin A. These findings imply that cargo receptors are essential for maintaining the architecture of ERGIC and Golgi by controlling COP I recruitment.  相似文献   

9.

Background  

To maintain organelle integrity, resident proteins must segregate from itinerant cargo during secretory transport. However, Golgi resident enzymes must have intimate access to secretory cargo in order to carry out glycosylation reactions. The amount of cargo and associated membrane may be significant compared to the amount of Golgi membrane and resident protein, but upon Golgi exit, cargo and resident are efficiently sorted. How this occurs in live cells is not known.  相似文献   

10.
11.
Secretory proteins enter the Golgi apparatus when transport vesicles fuse with the cis-side and exit in transport vesicles budding from the trans-side. Resident Golgi enzymes that have been transported in the cis-to-trans direction with the secretory flow must be recycled constantly by retrograde transport in the opposite direction. In this study, we describe the functional characterization of Golgi-derived transport vesicles that were isolated from tissue culture cells. We found that under the steady-state conditions of a living cell, a fraction of resident Golgi enzymes was found in vesicles that could be separated from cisternal membranes. These vesicles appeared to be depleted of secretory cargo. They were capable of binding to and fusion with isolated Golgi membranes, and after fusion their enzymatic contents most efficiently processed cargo that had just entered the Golgi apparatus. Those results indicate a possible role for these structures in recycling of Golgi enzymes in the Golgi stack.  相似文献   

12.

Background  

In eukaryotic cells, the membrane compartments that constitute the exocytic pathway are traversed by a constant flow of lipids and proteins. This is particularly true for the endoplasmic reticulum (ER), the main "gateway of the secretory pathway", where biosynthesis of sterols, lipids, membrane-bound and soluble proteins, and glycoproteins occurs. Maintenance of the resident proteins in this compartment implies they have to be distinguished from the secretory cargo. To this end, they must possess specific ER localization determinants to prevent their exit from the ER, and/or to interact with receptors responsible for their retrieval from the Golgi apparatus. Very few information is available about the signal(s) involved in the retention of membrane type II protein in the ER but it is generally accepted that sorting of ER type II cargo membrane proteins depends on motifs mainly located in their cytosolic tails.  相似文献   

13.
Recent studies demonstrate that processing of N-linked glycans plays an important role in the quality control of major histocompatibility complex (MHC) class I transport from the endoplasmic reticulum (ER) to the Golgi complex and beyond. Here, we investigated the importance of oligosaccharide chain length on the association of MHC class I proteins with molecular chaperones and their intracellular transport from the ER to the Golgi. These data show that calnexin interaction with class I proteins having truncated N-glycans was reduced compared to normal class I molecules, whereas the assembly of class I with calreticulin and TAP was unperturbed by N-glycan chain length. Additionally, these results demonstrate that class I proteins containing truncated N-glycans showed decreased detachment from calreticulin and TAP relative to class I proteins bearing typical oligosaccharides. Taken together, these studies show that N-glycan chain length is an important determinant for the quality control of newly synthesized MHC class I proteins in the ER.  相似文献   

14.
Melanin biosynthesis is completely inhibited in the B16 melanoma cells following their incubation with inhibitors of the two ER glucosidases. This is primarily due to the inactivation of tyrosinase. Under the same conditions, the DOPA-oxidase activity of TRP-1 was only partially affected. In this report we investigate the effects of the perturbation of N-glycan processing in ER on the transport and activation of tyrosinase and TRP-1. We have localized the DOPA-oxidase activity in normal and inhibited cells and suggest that the first DOPA-reactive compartment of the secretory pathway (trans Golgi network) is also the site of tyrosinase activation. The inhibition of N-glycan processing does not affect the intracellular trafficking of the two melanogenic enzymes that are correctly transported to melanosomes. Immunoprecipitation experiments followed by analysis in SDS-PAGE under non-reducing conditions suggest that in inhibited cells, both tyrosinase and TRP-1 are synthesized in a modified conformation as compared to the normal proteins. These data suggest that the inhibition of melanin synthesis is not due to a defective transport but rather to conformational changes induced in the structure of tyrosinase and TRP-1 during their transit through the ER.  相似文献   

15.
The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.  相似文献   

16.
Cargo proteins exiting the endoplasmic reticulum en route to the Golgi are typically carried in 60-70 nm vesicles surrounded by the COPII protein coat. Some secretory cargo assemblies in specialized mammalian cells are too large for transport within such carriers. Recent studies on procollagen-I and chylomicron trafficking have reached conflicting conclusions regarding the role of COPII proteins in ER exit of these large biological assemblies. COPII is no doubt essential for such transport in vivo, but it remains unclear whether COPII envelops the membrane surrounding large cargo or instead plays a more indirect role in transport carrier biogenesis.  相似文献   

17.
The Golgi serves as a hub for intracellular membrane traffic in the eukaryotic cell. Transport within the early secretory pathway, that is within the Golgi and from the Golgi to the endoplasmic reticulum, is mediated by COPI-coated vesicles. The COPI coat shares structural features with the clathrin coat, but differs in the mechanisms of cargo sorting and vesicle formation. The small GTPase Arf1 initiates coating on activation and recruits en bloc the stable heptameric protein complex coatomer that resembles the inner and the outer shells of clathrin-coated vesicles. Different binding sites exist in coatomer for membrane machinery and for the sorting of various classes of cargo proteins. During the budding of a COPI vesicle, lipids are sorted to give a liquid-disordered phase composition. For the release of a COPI-coated vesicle, coatomer and Arf cooperate to mediate membrane separation.  相似文献   

18.
Lipid-transfer proteins in membrane trafficking at the Golgi complex   总被引:5,自引:0,他引:5  
The Golgi complex (GC) represents the central junction for membrane trafficking. Protein and lipid cargoes continuously move through the GC in both anterograde and retrograde directions, departing to and arriving from diverse destinations within the cell. Nevertheless, the GC is able to maintain its identity and strict compartmentalisation, having a different composition in terms of protein and lipid content compared to other organelles. The discovery of coat protein complexes and the elucidation of their role in sorting cargo proteins into specific transport carriers have provided a partial answer to this phenomenon. However, it is more difficult to understand how relatively small and diffusible molecules like lipids can be concentrated in or excluded from specific subcellular compartments. The discovery of lipid-transfer proteins operating in the secretory pathway and specifically at the GC has shed light on one possible way in which this lipid compartmentalisation can be accomplished. The correct lipid distribution along the secretory pathway is of crucial importance for cargo protein sorting and secretion. This review focuses on what is now known about the putative and effective lipid-transfer proteins at the GC, and on how they affect the function and structure of the GC itself.  相似文献   

19.
Traffic COPs and the formation of vesicle coats   总被引:9,自引:0,他引:9  
Forward and retrograde trafficking of secretory proteins between the endoplasmic reticulum and the Golgi apparatus is driven by two biochemically distinct vesicle coats, COPI and COPII. Assembly of the coats on their target membranes is thought to provide the driving force for membrane deformation and the selective packaging of cargo and targeting molecules into nascent transport vesicles. This review describes our current knowledge on these issues and discusses how the two coats may be differentially targeted and assembled to achieve protein sorting and transport within the early secretory pathway.  相似文献   

20.
We have identified an important functional region of the yeast Arf1 activator Gea2p upstream of the catalytic Sec7 domain and characterized a set of temperature-sensitive (ts) mutants with amino acid substitutions in this region. These gea2-ts mutants block or slow transport of proteins traversing the secretory pathway at exit from the endoplasmic reticulum (ER) and the early Golgi, and accumulate both ER and early Golgi membranes. No defects in two types of retrograde trafficking/sorting assays were observed. We find that a substantial amount of COPI is associated with Golgi membranes in the gea2-ts mutants, even after prolonged incubation at the nonpermissive temperature. COPI in these mutants is released from Golgi membranes by brefeldin A, a drug that binds directly to Gea2p and blocks Arf1 activation. Our results demonstrate that COPI function in sorting of at least three retrograde cargo proteins within the Golgi is not perturbed in these mutants, but that forward transport is severely inhibited. Hence this region of Gea2p upstream of the Sec7 domain plays a role in anterograde transport that is independent of its role in recruiting COPI for retrograde transport, at least of a subset of Golgi-ER cargo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号