首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol 4-kinase has been purified 10,148-fold to a specific activity of 2.7 mumol/mg/min from bovine uteri. This purification was accomplished by detergent extraction of an acetone powder, ammonium sulfate precipitation, and chromatography on MonoQ, S-Sepharose, MonoP, and hydroxylapatite columns. The purified enzyme has a molecular mass of 55 kDa and appears to be monomeric. Kinetic analyses of the enzymatic activity demonstrated apparent Km values of 18 microM and 22 micrograms/ml (approximately 26 microM) for ATP and phosphatidylinositol, respectively, optimal activity in the pH range of 6.0-7.0, and a sigmoidal dependence of enzymatic activity on [Mg2+]. Ca2+ inhibited the enzyme at nonphysiological concentrations with 50% inhibition observed at a free [Ca2+] of approximately 300 microM. The purified enzyme efficiently utilized both ATP and 2'-deoxy-ATP as phosphoryl donors and specifically phosphorylated phosphatidylinositol on the fourth position. No phosphatidylinositol-4-phosphate 5-kinase activity was observed in the purified enzyme preparations. To our knowledge, this is the first reported purification of a phosphatidylinositol-specific phosphatidylinositol 4-kinase.  相似文献   

2.
Inositol lipid kinasesgenerate polyphosphoinositides, important regulators of severalcellular functions. We have recently cloned two distinctphosphatidylinositol (PI) 4-kinase enzymes, the 210-kDa PI4KIII andthe 110-kDa PI4KIII, from bovine tissues. In the present study, thedistribution of mRNAs encoding these two enzymes was analyzed by insitu hybridization histochemistry in the rat. PI4KIII was foundpredominantly expressed in the brain, with low expression in peripheraltissues. PI4KIII was more uniformly expressed being also present invarious peripheral tissues. Within the brain, PI4KIII showed highestexpression in the gray matter, especially in neurons of the olfactorybulb and the hippocampus, but also gave a signal in the white matter indicating its presence in glia. PI4KIII was highly expressed inneurons, but lacked a signal in the white matter and the choroid plexus. Both enzymes showed expression in the pigment layer and nuclearlayers as well as in the ganglion cells of the retina. In a 17-day-oldrat fetus, PI4KIII was found to be more widely distributed andPI4KIII was primarily expressed in neurons. These results indicatethat PI4KIII is more widely expressed than PI4KIII, and that thetwo enzymes are probably coexpressed in many neurons. Such expressionpattern and the conservation of these two proteins during evolutionsuggest their nonredundant functions in mammalian cells.

  相似文献   

3.
4.
《Life sciences》1995,57(7):685-694
The metabolism of phosphoinositides plays an important role in the signal transduction pathways. We report here that naturally occuring polyamines affect the activities of phosphatidylinositol (PI) 3-kinase and PI 4-phosphate (PIP) 5-kinase differently. While polyamines inhibited the PI 3-kinase activity, they stimulated the activity of PIP 5-kinase in the order of spermine > spermidine > putrescine. Spermine inhibited the PI 3-kinase activity in a concentration-dependent manner with an IC50 of 100 μM. On the other hand, spermine (5 mH) stimulated the activity of PIP 5-kinase 2–3 fold. Kinetic studies of spermine-mediated inhibition of PI 3-kinase revealed that it was noncompetitive with respect to ATP. The effect of Mg2+ and PIP, concentration on kinase activity was sigmoidal, with spermine inhibiting PI 3-kinase activity at all PIP2 concentrations. While 1 mH calcium stimulated PI 3-kinase activity at submaximal concentrations of Mg2+ (1.25 mH), inhibition was observed at optimal concentration of Mg2+(2 mM). We propose that spermine may modulate the cellular signal by virtue of its differential effects on phosphoinositide kinases.  相似文献   

5.
A membrane-bound phosphatidylinositol 4-kinase (PtdIns kinase) has been purified to apparent homogeneity from human erythrocytes. Enzyme activity was solubilized from urea-KCl-stripped, inside-out membrane vesicles by 3% Triton X-100. Purification to apparent homogeneity was accomplished by cation-exchange chromatography on phosphocellulose, followed by heparin-acrylamide chromatography. This resulted in a nearly 3900-fold purification of PtdIns kinase activity to a specific activity of 44 nmol min-1 mg-1. The purified enzyme has an Mr of 59,000 on silver-stained SDS-PAGE; however, many preparations also contain 54 kDa and 50 kDa proteins which are related to the 59 kDa protein and have PtdIns kinase activity. Kinetic analysis of the PtdIns kinase indicate apparent Km values of 40 and 35 microM for phosphatidylinositol and ATP, respectively. The purified enzyme has been reconstituted into phospholipid liposomes and shown to phosphorylate phosphatidylinositol.  相似文献   

6.
7.
Two types of phosphatidylinositol (PI) 3-kinase (PI3K) have been purified 6250-fold (PI3KI) and 1250-fold (PI3KII) from the cytosol fraction of bovine thymus. Purified PI3KI and PI3KII were found to have apparent molecular masses of 110 and 190 kDa, respectively, by gel filtration. On the other hand, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the molecular mass of PI3KI was again estimated as 110 kDa, PI3KII showed two bands with apparent molecular masses of 110 and 85 kDa, suggesting a heterodimer form. Peptide mapping analysis demonstrated that the 110-kDa protein in PI3KII was the same protein as PI3KI. The specific activity of PI3KI was calculated as 250 nmol/min/mg of protein, while that of PI3KII was 50 nmol/min/mg of protein. The product of PI phosphorylation by PI3KI and PI3KII were confirmed as phosphatidylinositol 3-phosphate by PartiSphere Sax column chromatography. The results show that there are two types of PI 3-kinase in bovine thymus. One exists as a monomer and the other as a heterodimer form. Furthermore, the biochemical properties of these two PI 3-kinases are markedly different. These two types of PI 3-kinase may be regulated differently under physiological conditions.  相似文献   

8.
Cobra venom cardiotoxin was found to stimulate the phosphatidylinositol kinase activity present in A431 cell membranes and in detergent extracts of these membranes. Incubation of highly purified phosphatidylinositol 4-kinase from this source with cardiotoxin resulted in a 2- to 3-fold stimulation of phosphatidylinositol kinase activity. The activation of the purified phosphatidylinositol 4-kinase by cardiotoxin was time- and dose-dependent and appeared to be associated with a decrease in the Km apparent of the enzyme for phosphatidylinositol with no change in the Vmax apparent of the enzyme. The data suggest that the phosphatidylinositol 4-kinase is activated by direct interaction of the enzyme with cobra venom cardiotoxin.  相似文献   

9.
In this study 2 phosphatidylinositol 3-kinase (PI 3-kinase)-specific inhibitors, wortmannin and 2-[4-Morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002), were used to investigate whether PI 3-kinase is involved in the signal transduction that leads to bovine oocyte maturation. Bovine follicular oocytes were cultured in vitro for 24 h in a basic medium consisting of tissue culture medium-199 supplemented with LH, FSH, fetal cow serum, Na-pyruvate and gentamicin. The oocytes were then examined for the stage of meiotic progression and degree of cumulus expansion. In Experiment 1, in cumulus-oocyte complexes (COCs), wortmannin, at any level tested (10(-8) M, 10(-7) M or 10(-6) M), had no effect on resumption of meiosis as judged by germinal vesicle breakdown and progression to prometaphase I or metaphase I. However, wortmannin significantly (P < 0.01) decreased the proportion of oocytes developing to metaphase II in a dose-dependent manner. In Experiment 2, when denuded oocytes were cultured with wortmannin at 0, 10(-7) M and 10(-6) M concentrations, the same pattern of response for COCs was observed, with no effect on meiotic resumption and a significant (P < 0.01) decrease in the proportion of oocytes reaching metaphase II. In Experiment 3, half of the recovered COCs were denuded and both denuded and intact COCs were cultured in the presence of 0, 2.5 x 10(-5) M, 5.0 x 10(-5) M and 7.5 x 10(-5) M LY 294002 before being examined for meiotic progression. Whereas LY294002, at any examined level, had no effect on the percentage of oocytes developing to metaphase I, it significantly (P < 0.01) decreased the proportion of metaphase II oocytes when used at 5.0 x 10(-5) or 7.5 x 10(-5) M for both intact COCs and denuded oocytes. In Experiment 4, no significant difference in the degree of cumulus expansion was scored after the COCs were cultured in the presence of wortmannin or LY294002 or in the absence of either treatment. These results provide indirect evidence for a role of PI 3-kinase in the bovine oocyte itself in regulating meiotic progression beyond metaphase I.  相似文献   

10.
Two species of PtdIns 4-kinase with molecular masses of 50 kDa and 45 kDa were detected in human erythrocyte membranes using SDS/PAGE. These enzymes were purified to near homogeneity and found to display very similar enzymatic characteristics. The purification scheme consisted of solubilization from erythrocyte membranes in the presence of Triton X-100, followed by Cibacron-blue-Sephadex, phosphocellulose and Mono Q anion-exchange chromatography. The final step in the purification protocol was preparative SDS/PAGE, followed by electroelution and renaturation of the enzyme. This procedure afforded an about 4000-fold purification of the enzyme from erythrocyte membranes. Characterization of the [32P]PtdInsP products formed by the purified PtdIns kinases indicated that these enzymes specifically phosphorylated the D-4 position of the inositol ring. The Km values of both PtdIns 4-kinase species for PtdIns and ATP were found to be 0.2 mM and 0.1 mM, respectively. The enzymes are both activated by Mg2+, and inhibited by Ca2+ and by adenosine. The potential importance of these effectors for the regulation of PtdIns phosphorylation in cells is discussed.  相似文献   

11.
N-Substituted-2-amino-4(3H)-7H-oxopyrrolo[2,3-d]pyrimidine-5-carbo xamides and their ribofuranosyl and 2',3'-dideoxyribofuranosyl derivatives were prepared as membrane permeable echiguanine analogs and tested for their ability to inhibit phosphatidylinositol (PI) 4-kinase. The ethylamide 5 and the corresponding ribofuranosyl compound 11 inhibited PI 4-kinase with IC50 values of 0.02 and 2.4 micrograms/ml, respectively.  相似文献   

12.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   

13.
The presence of different isoenzymes of phosphatidylinositol 4-kinase in isolated rat liver plasma membranes and their further distribution in plasma membrane domains was examined. Both wortmannin-sensitive and -insensitive PtdIns 4-kinase activities were detected in highly purified plasma membranes obtained by aqueous two-phase affinity partitioning. The wortmannin-sensitive enzyme was identified as the 230 kDa isoform by Western blotting, whereas the 92 kDa isoform was not detected in plasma membranes. The apparent molecular weights of these isoforms were 205 and 105 kDa on SDS polyacrylamide gel electrophoresis, but approximately 500 and 230 kDa respectively on gel filtration, suggesting that both enzymes either are dimers or composed of heterologous subunits. Approximately 25% of the total 230 kDa isoenzyme present in liver, and only ca 5% of the wortmannin-insensitive one, was associated with the plasma membrane fraction. Plasma membrane domains were isolated by a combination of sucrose and Nycodenz gradient centrifugations. The 230 kDa isoform was identified in the blood sinusoidal domain, but not in the bile canalicular one, and was also found in lateral plasma membranes. The wortmannin-insensitive isoenzyme was present only in this latter material. The functional implications of this distribution of PtdIns 4-kinase isoenzymes in plasma membrane regions are discussed.  相似文献   

14.
We have shown previously that a nuclear phosphatidylinositol (PI) 4-kinase activity was present in intact nuclei isolated from carrot suspension culture cells (Daucus carota L.). Here, we further characterized the enzyme activity of the nuclear enzyme. We found that the pH optimum of the nuclear-associated PI kinase varied with assay conditions. The enzyme had a broad pH optimum between 6.5–7.5 in the presence of endogenous substrate. When the substrate was added in the form of phosphatidylinositol/phosphatidylserine (PI/PS) mixed micelles (1 mM PI and 400 μM PS), the enzyme had an optimum of pH 6.5. In comparison, the pH optimum was 7.0 when PI/Triton X-100 mixed micelles (1 mM PI in 0.025 %, v/v final concentration of Triton X-100) were used. The nuclear-associated PI kinase activity increased 5-fold in the presence of low concentrations of Triton X-100 (0.05 to 0.3 %, v/v); however, the activity decreased by 30 % at Triton X-100 concentrations greater than 0.3 % (v/v). Calcium at 10 μM inhibited 100 % of the nuclear-associated enzyme activity. The Km for ATP was estimated to be between 36 and 40 μM. The nuclear-associated PI kinase activity was inhibited by both 50 μM ADP and 10 μM adenosine. Treatment of intact nuclei with DNase, RNase, phospholipase A2 and Triton X-100 did not solubilize the enzyme activity. Based on sensitivity to calcium, ADP, detergent, pH optimum and the product analysis, the nuclear-associated PI 4-kinase was compared with previously reported PI kinases from plants, animals and yeast.  相似文献   

15.
Cancer-specific mutations in phosphatidylinositol 3-kinase   总被引:3,自引:0,他引:3  
Cancer-specific mutations in the catalytic subunit of phosphatidylinositol 3-kinase (PI3K) p110 alpha occur in diverse tumors in frequencies that can exceed 30%. The majority of these mutations map to one of three hot spots in the gene, and the rest are distributed over much of the PI3K coding sequence. Most of the cancer-specific mutations induce a gain of function that results in oncogenicity, elevated lipid kinase activity and constitutive signaling through the kinases Akt and TOR. The location of the mutations on a model structure of p110 alpha indicates several distinct mechanisms for the gain of function. The mutated p110 alpha proteins are promising cancer targets. Although identification of mutant-specific small-molecule inhibitors seems technically challenging, the therapeutic benefits from such inhibitors could be extremely important.  相似文献   

16.
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the rate-limiting step in the production of phosphatidylinositol 4,5-bisphosphate (PIP(2)), a signaling phospholipid that contributes to actin dynamics. We have shown in transfected tissue culture cells that PIP5K translocates from the cytosol to the plasma membrane following agonist-induced stimulation of Rho family GTPases. Nonetheless, it is unclear whether Rho GTPases induce PIP5K relocalization in platelets. We used PIP5K isoform-specific immunoblotting and lipid kinase assays to examine the intracellular localization of PIP5K in resting and activated platelets. Using differential centrifugation to separate the membrane skeleton, actin filaments and associated proteins, and cytoplasmic fractions, we found that PIP5K isoforms were translocated from cytosol to actin-rich fractions following stimulation of the thrombin receptor. PIP5K translocation was detectable within 30 s of stimulation and was complete by 2-5 min. This agonist-induced relocalization and activation of PIP5K was inhibited by 8-(4-parachlorophenylthio)-cAMP, a cAMP analogue that inhibits Rho and Rac. In contrast, 8-(4-parachlorophenylthio)-cGMP, a cGMP analogue that inhibits Rac but not Rho, did not affect PIP5K translocation and activation. This suggests that Rho GTPase may be an essential regulator of PIP5K in platelets. Consistent with this hypothesis, we found that C3 exotoxin (a Rho-specific inhibitor) and HA1077 (an inhibitor of the Rho effector, Rho-kinase) also eliminated PIP5K activation and trafficking into the membrane cytoskeleton. Thus, these data indicate that Rho GTPase and its effector Rho-kinase have an intimate relationship with the trafficking and activation of platelet PIP5K. Moreover, these data suggest that relocalization of platelet PIP5K following agonist stimulation may play an important role in regulating the assembly of the platelet cytoskeleton.  相似文献   

17.
18.
Phosphorylated derivatives of phosphatidylinositol (PtdIns) are key components of many signaling cascades. Many isoforms of PtdIns kinases, PtdIns phosphate kinases and phosphatases use these lipids in amazing networks of signaling cascades that are yet to be understood fully. PtdIns 4-kinase(s) phosphorylates PtdIns at the 4th -OH position of inositol head group and are classified in to type II and III PtdIns 4-kinases. While type III PtdIns 4-kinases are implicated in vesicular trafficking, type II PtdIns 4-kinases are suggested to play a role in cell signaling, cytoskeletal rearrangements, cell motility and in microbial pathogenicity. This paper reviews the role of type II PtdIns 4-kinases in cell signaling cascades in health and disease.  相似文献   

19.
BACKGROUND: Previous immunohistochemical investigations could not detect PI4K230, an isoform of mammalian phosphatidylinositol 4-kinases (also called type III alpha), in the nucleus and nucleolus of cells in spite of its predicted nuclear localization signals. METHODS: Immunofluorescent detection of PI4K230 and other PI4K isoforms was performed on formaldehyde (PFA) or ethanol fixed cells and rat brain cryosections. Costaining with nucleolin and the effect of siRNA, Triton X-100, DNase, and RNase treatments were also tested to determine the localization of PI4K230. RESULTS: PI4K230 gives a prominent signal in the nucleolus of ethanol fixed rat brain cryosections and of several cell types in addition to its presence in the nucleus and cytoplasm. The PI4K230 immunoreactivity of the nucleolus is masked in PFA fixed cells, but it can be restored by treatment of PFA fixed cells with hot wet citrate buffer or by washing the cryosections with PBS prior to PFA fixation. Nucleolar PI4K230 occurs in a Triton X-100 resistant complex. Treatment of COS-7 cells with siRNA targeting PI4K230 and permeabilized B50 cells with DNase or RNase results in the loss of PI4K230 signal from the nucleolus. CONCLUSION: These experiments suggest the participation of PI4K230 in a DNase and RNase sensitive complex with a unique localization and function in the nucleolus.  相似文献   

20.
By constructing DNA probes we have identified and cloned a human PtdIns 4-kinase, PI4K230, corresponding to a mRNA of 7.0 kb. The cDNA encodes a protein of 2044 amino acids. The C-terminal part of ca. 260 amino acids represents the catalytic domain which is highly conserved in all recently cloned PtdIns 4-kinases. N-terminal motifs indicate multiple heterologous protein interactions. Human PtdIns 4-kinase PI4K230 expressed in vitro exhibits a specific activity of 58 micromol mg-1min-1. The enzyme expressed in Sf9 cells is essentially not inhibited by adenosine, it shows a high Km for ATP of about 300 microM and it is half-maximally inactivated by approximately 200 nM wortmannin. These data classify this enzyme as type 3 PtdIns 4-kinase. Antibodies raised against the N-terminal part moderately activate and those raised against the C-terminal catalytic domain inhibit the enzymatic activity. The coexistence of two different type 3 PtdIns 4-kinases, PI4K92 and PI4K230, in several human tissues, including brain, suggests that these enzymes are involved in distinct basic cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号