首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Whereas glutamate dehydrogenase in most mammals (hGDH1 in the human) is encoded by a single functional GLUD1 gene expressed widely, humans and other primates have acquired through retroposition an X-linked GLUD2 gene that encodes a highly homologous isoenzyme (hGDH2) expressed in testis and brain. Using an antibody specific for hGDH2, we showed that hGDH2 is expressed in testicular Sertoli cells and in cerebral cortical astrocytes. Although hGDH1 and hGDH2 have similar catalytic properties, they differ markedly in their regulatory profile. While hGDH1 is potently inhibited by GTP and may be controlled by the need of the cell for ATP, hGDH2 has dissociated its function from GTP and may metabolize glutamate even when the Krebs cycle generates GTP amounts sufficient to inactivate hGDH1. As astrocytes are known to provide neurons with lactate that largely derives from the Krebs cycle via conversion of glutamate to α-ketoglutarate, the selective expression of hGDH2 may facilitate metabolic recycling processes essential for glutamatergic transmission. As there is evidence for deregulation of glutamate metabolism in degenerative neurologic disorders, we sequenced GLUD1 and GLUD2 genes in neurologic patients and found that a rare T1492G variation in GLUD2 that results in substitution of Ala for Ser445 in the regulatory domain of hGDH2 interacted significantly with Parkinson's disease (PD) onset. Thus, in two independent Greek and one North American PD cohorts, Ser445Ala hemizygous males, but not heterozygous females, developed PD 6-13 years earlier than subjects with other genotypes. The Ala445-hGDH2 variant shows enhanced catalytic activity that is resistant to modulation by GTP, but sensitive to inhibition by estrogens. These observations are thought to suggest that enhanced glutamate oxidation by the Ala445-hGDH2 variant accelerates nigral cell degeneration in hemizygous males and that inhibition of the overactive enzyme by estrogens protects heterozygous females. We then evaluated the interaction of estrogens and neuroleptic agents (haloperidol and perphenazine) with the wild-type hGDH1 and hGDH2 and found that both inhibited hGDH2 more potently than hGDH1 and that the evolutionary Arg443Ser substitution was largely responsible for this sensitivity. Hence, the properties acquired by hGDH2 during its evolution have made the enzyme a selective target for neuroactive steroids and drugs, providing new means for therapeutic interventions in disorders linked to deregulation of this enzyme.  相似文献   

3.
Glutamate dehydrogenase (GDH) in human exists in GLUD1 and GLUD2 gene-encoded isoforms (hGDH1 and hGDH2, respectively), differing in their regulation and tissue expression pattern. Whereas hGDH1 is subject to GTP control, hGDH2 uses for its regulation, a novel molecular mechanism not requiring GTP. This is based on the ability of hGDH2 to maintain a baseline activity of <10% of its capacity subject to full activation by rising ADP/ l -leucine levels. Here we studied further the molecular mechanisms regulating hGDH2 function by creating and analyzing hGDH2 mutants harboring single amino acid substitutions in the regulatory domain (antenna, pivot helix) of the protein. Five hGDH2 mutants were obtained: two with an amino acid change (Gln441Arg, Ser445Leu) in the antenna, two (Lys450Glu, His454Tyr) in the pivot helix, and one (Ser448Pro) in the junction between the two structures. Functional analyses revealed that, while the antenna mutations increased basal enzyme activity without affecting its allosteric properties, the pivot helix mutations drastically reduced basal activity and impaired enzyme regulation. On the other hand, the Ser448Pro mutation reduced basal activity but did not alter allosteric regulation. Also, compared with wild-type hGDH2, the antenna mutants were relatively thermostable, whereas the pivot helix mutants were extremely heat labile. Hence, the present data further our understanding of the molecular mechanisms involved in the function and stability of hGDH2, an enzyme thought to be of importance for nerve tissue biology.  相似文献   

4.
Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) differ markedly in their inhibition by GTP. These regulatory preferences must arise from amino acid residues that are not common between hGDH isozymes. We have constructed chimeric enzymes by reciprocally switching the corresponding amino acid segments 390-465 in hGDH isozymes that are located within or near the C-terminal 48-residue antenna helix, which is thought to be part of the regulatory domain of mammalian GDHs. These resulted in triple mutations in amino acid sequences at 415, 443, and 456 sites that are not common between hGDH1 and hGDH2. The chimeric enzymes did not change their enzyme efficiency (kcat/Km) and expression level. Functional analyses, however, revealed that the chimeric mutants almost completely acquired the different GTP regulatory preference between hGDH isozymes. These results suggest that the 415, 443, and 456 residues acting in concert are responsible for the GTP inhibitory properties of hGDH isozymes.  相似文献   

5.
Myopodin is an actin bundling protein that shuttles between nucleus and cytoplasm in response to cell stress or during differentiation. Here, we show that the myopodin sequence 58KKRRRRARK66, when tagged to either enhanced green fluorescent protein (EGFP) or to enhanced cyan fluorescent protein-CapG (ECFPCapG), is able to target these proteins to the nucleolus in HeLa or HEK293T cells. By contrast, 58KKRR61-ECFP-CapG accumulates in the nucleus. Mutation of 58KKRRRRARK66 into alanine residues blocks myopodin nuclear import and promotes formation of cytoplasmic actin filaments. A second putative nuclear localization sequence, 612KTSKKKGKK620, displays much weaker activity in a heterologous context, and appears not to be functional in the full length protein. Thus myopodin nuclear translocation is dependent on a monopartite nuclear localization sequence.  相似文献   

6.
Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at ?30 °C and sliced at 10 μm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough.  相似文献   

7.
A 2.3-kb PstI-ClaI chromosomal DNA segment, carrying the complete coding region of the glutamate dehydrogenase (GDH) structural gene from Escherichia coli K-12, has been sequenced. The complete amino acid sequence (447 residues) of the GDH monomer has been deduced, and comparisons are made with reported amino acid sequences of GDH from other organisms.  相似文献   

8.
Tomoko Kawai 《FEBS letters》2010,584(4):765-769
The neural adaptor protein FE65 interacts with the amyloid β-protein precursor (APP). In osmotically stressed cells, the membrane APP-tethered FE65 is released into the cytoplasm and translocates to the nuclear matrix, where it stabilizes p53 via a non-canonical pathway. In this study, we found that the second phosphotyrosine interaction domain (PI2) of FE65 mediated its trans-accumulation in the nuclear matrix of osmotically stressed cells. The carboxyl-terminal half of FE65, which contains the PI2 domain, failed to stabilize p53, suggesting that the amino-terminal half of the protein plays an important role in the stabilization of p53 in osmotically stressed cells.  相似文献   

9.
Schreiner D  Müller K  Hofer HW 《FEBS letters》2006,580(22):5295-5300
The cadherin superfamily protein Fat1 is known to interact with the EVH1 domain of mammalian Ena/VASP. Here we demonstrate that: (i) the scaffolding proteins Homer-3 and Homer-1 also interact with the EVH1 binding site of hFat1 in vitro, and (ii) binding of Homer-3 and Mena to hFat1 is mutually competitive. Endogenous Fat1 binds to immobilised Homer-3 and endogenous Homer-3 binds to immobilised Fat1. Both, endogenous and over-expressed Fat1 exhibit co-localisation with Homer-3 in cellular protrusions and at the plasma membrane of HeLa cells. As Homer proteins and Fat1 have been both linked to psychic disorders, their interaction may be of patho-physiological importance.  相似文献   

10.
Klyuyeva A  Tuganova A  Popov KM 《FEBS letters》2007,581(16):2988-2992
Dichloroacetate (DCA) is a promising anticancer and antidiabetic compound targeting the mitochondrial pyruvate dehydrogenase kinase (PDHK). This study was undertaken in order to map the DCA-binding site of PDHK2. Here, we present evidence that R114, S83, I157 and, to some extent, H115 are essential for DCA binding. We also show that Y80 and D117 are required for the communication between the DCA-binding site and active site of PDHK2. These observations provide important insights into the mechanism of DCA action that may be useful for the design of new, more potent therapeutic compounds.  相似文献   

11.
Following the discovery that in Arabidopsis, a third isoenzyme of NADH-dependent glutamate dehydrogenase (GDH) is expressed in the mitochondria of the root companion cells, we have re-examined the GDH isoenzyme composition. By analyzing the NADH-GDH isoenzyme composition of single, double and triple mutants deficient in the expression of the three genes encoding the enzyme, we have found that the α, β and γ polypeptides that comprise the enzyme can be assembled into a complex combination of heterohexamers in roots. Moreover, we observed that when one or two of the three root isoenzymes were missing from the mutants, the remaining isoenzymes compensated for this deficiency. The significance of such complexity is discussed in relation to the metabolic and signaling function of the NADH-GDH enzyme. Although it has been shown that a fourth gene encoding a NADPH-dependent enzyme is present in Arabidopsis, we were not able to detect corresponding enzyme activity, even in the triple mutant totally lacking NADH-GDH activity.  相似文献   

12.
13.
Very long-chain fatty acids are produced through a four-step cycle. However, the 3-hydroxyacyl-CoA dehydratase catalyzing the third step in mammals has remained unidentified. Mammals have four candidates, HACD1-4, based on sequence similarities to the recently identified yeast Phs1, although HACD3 and HACD4 share relatively weak similarity. We demonstrate that all four of these human proteins are indeed 3-hydroxyacyl-CoA dehydratases, in growth suppression experiments using a PHS1-shut off yeast strain and/or in vitro 3-hydroxypalmitoyl-CoA dehydratase assays. HACD proteins exhibit distinct tissue-expression patterns. We also establish that HACD proteins interact with the condensation enzymes ELOVL1-7, with some preferences.  相似文献   

14.
In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase (ODH) complex is negatively regulated by the unphosphorylated form of OdhI protein, which is critical for L-glutamate overproduction. We examined the potential impact of protein acylation at lysine (K)-132 of OdhI in C. glutamicum ATCC13032. The K132E succinylation-mimic mutation reduced the ability of OdhI to bind OdhA, the catalytic subunit of the ODH complex, which reduced the inhibition of ODH activity. In vitro succinylation of OdhI protein also reduced the ability to inhibit ODH, and the K132R mutation blocked the effect. These results suggest that succinylation at K132 may attenuate the OdhI function. Consistent with these results, the C. glutamicum mutant strain with OdhI-K132E showed decreased L-glutamate production. Our results indicated that not only phosphorylation but also succinylation of OdhI protein may regulate L-glutamate production in C. glutamicum.  相似文献   

15.
16.
NAD+ facilitates high-yield reactivation of clostridial glutamate dehydrogenase (GDH) after unfolding in urea. The specificity of this effect has been explored by using analogues and fragments of NAD+. The adenine portion, unlike the nicotinamide portion, is important for reactivation. Alteration in the nicotinamide portion, in acetylpyridine adenine dinucleotide, has little effect, whereas loss of the 6-NH2 substitution on the adenine ring, in 6-deamino NAD, diminishes the effectiveness of the nucleotide in promoting refolding. Also ADP-ribose, lacking nicotinamide, promotes reactivation whereas NMN-phosphoribose, lacking the adenine, does not. Of the smaller fragments, those containing an adenosine moiety, and especially those with one or more phosphate groups, impede the refolding ability of NAD+, and are able to bind to the folding intermediate though unable to facilitate refolding. These results are interpreted in terms of the known 3D structure for clostridial glutamate dehydrogenase. It is assumed that the refolding intermediate has a more or less fully formed NAD+-binding domain but a partially disordered substrate-binding domain and linking region. Binding of NAD+ or ADP-ribose appears to impose new structural constraints that result in completion of the correct folding of the second domain, allowing association of enzyme molecules to form the native hexamer.  相似文献   

17.
Bovine glutamate dehydrogenase (GDH) is allosterically regulated and requires substrate‐induced subunit interactions for maximum catalytic activity. Steady‐state and presteady‐state kinetics indicate that the rate‐limiting step depends on the nature of the substrate and are likely associated with conformational fluctuations necessary for optimal hydride transfer. Deuterated glutamate shows a steady‐state isotope effect but no effect on the presteady‐state burst rate, demonstrating that conformational effects are rate limiting for hydride transfer while product release is overall rate limiting for glutamate. Guanidine hydrochloride unfolding, heat inactivation, and differential scanning calorimetry demonstrate the effects of alternative substrates, glutamate and norvaline, on conformational stability. Glutamate has little effect on overall stability, whereas norvaline markedly stabilizes the protein. Limited proteolysis demonstrates that glutamate had a variety of effects on local flexibility, whereas norvaline significantly decreased conformational fluctuations that allow protease cleavage. Dynamic light scattering suggests that norvaline stabilizes all interfaces in the hexamer, whereas glutamate had little effect on trimer–trimer interactions. The substrate glutamate exhibits negative cooperativity and complex allosteric regulation but has only minor effects on global GDH stability, while promoting certain local conformational fluctuations. In contrast, the substrate norvaline does not show negative cooperativity or allow allosteric regulation. Instead, norvaline significantly stabilizes the enzyme and markedly slows or prevents local conformational fluctuations that are likely to be important for cooperative effects and to determine the overall rate of hydride transfer. This suggests that homotropic allosteric regulation by the enzymatic substrate involves changes in both global stability and local flexibility of the protein.  相似文献   

18.
19.
20.
Very recently, the mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD), a member of the aldo-keto reductase (AKR) superfamily, has been characterized and identified as the unique enzyme able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epitestosterone (epi-T), the 17alpha-epimer of testosterone. Indeed, the other AKR enzymes that significantly reduce keto groups situated at position C17 of the steroid nucleus, the human type 3 3alpha-HSD (h3alpha-HSD3), the human and mouse type 5 17beta-HSD, and the rabbit 20alpha-HSD, produce only 17beta-hydroxy derivatives, although they possess more than 70% amino acid identity with m17alpha-HSD. Structural comparisons of these highly homologous enzymes thus offer an excellent opportunity of identifying the molecular determinants responsible for their 17alpha/17beta-stereospecificity. Here, we report the crystal structure of the m17alpha-HSD enzyme in its apo-form (1.9 A resolution) as well as those of two different forms of this enzyme in binary complex with NADP(H) (2.9 A and 1.35 A resolution). Interestingly, one of these binary complex structures could represent a conformational intermediate between the apoenzyme and the active binary complex. These structures provide a complete picture of the NADP(H)-enzyme interactions involving the flexible loop B, which can adopt two different conformations upon cofactor binding. Structural comparison with binary complexes of other AKR1C enzymes has also revealed particularities of the interaction between m17alpha-HSD and NADP(H), which explain why it has been possible to crystallize this enzyme in its apo form. Close inspection of the m17alpha-HSD steroid-binding cavity formed upon cofactor binding leads us to hypothesize that the residue at position 24 is of paramount importance for the stereospecificity of the reduction reaction. Mutagenic studies have showed that the m17alpha-HSD(A24Y) mutant exhibited a completely reversed stereospecificity, producing testosterone only from Delta4, whereas the h3alpha-HSD3(Y24A) mutant acquires the capacity to metabolize Delta4 into epi-T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号