首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Reproductive biology》2022,22(1):100595
Leydig cells are responsible for testosterone production in male testis upon stimulation by luteinizing hormone. Inflammation and oxidative stress related Leydig cell dysfunction is one of the major causes of male infertility. Cytoglobin (CYGB) and Neuroglobin (NGB) are two globin family member proteins which protect cells against oxidative stress.In the current study, we established a Lipopolysaccharide (LPS)-induced inflammation model in TM3 Leydig cell culture to study the function of CYGB and NGB proteins under inflammatory conditions. CYGB and NGB were downregulated using siRNA and shRNA based experimental strategies. Overexpression was conducted using lentiviral pLenti-III-CYGB-2A-GFP, and pLenti-III-NGB-2A-GFP vector systems. As testicular macrophages regulate immune function upon inflammation and steroidogenesis of Leydig cells, we generated direct/indirect co-culture systems of TM3 and mouse macrophage (RAW264.7) cells ex vivo.Downregulation of CYGB and NGB induced nitride oxide (NO) release, blocked cell cycle progression, reduced testosterone production and increased inflammatory and apoptotic pathway gene expression in the presence and absence of LPS. On the other hand, CYGB and NGB overexpression reduced TNFα and COX-2 protein expressions and increased the expression of testosterone biogenesis pathway genes upon LPS stimulation. In addition, CYGB and NGB overexpression upregulated testosterone production. The present study successfully established an inflammatory interaction model of TM3 and RAW264.7 cells. Suppression of CYGB and NGB in TM3 cells changed macrophage morphology, enhanced macrophage cell number and NO release in co-culture experiments upon LPS exposure.In summary, these results demonstrate that globin family members might control LPS induced inflammation by regulating apoptotic mechanisms and macrophage response.  相似文献   

2.
Male rats were injected with 50 mg ethylene-1,2-dimethanesulphonate/kg from Day 5 to Day 16 after birth and control rats received injections of the same volume of vehicle. Testes were studied at various times from Day 6 to Day 108 using histochemistry, light and electron microscopy. Fine structural degenerative changes were observed in the Leydig cells and seminiferous tubules of EDS-treated animals as early as Day 6. By Day 11 no Leydig cells could be detected and the interstitia of EDS-treated testes contained large numbers of fibroblast-like cells which formed peritubular collars 3-5 cells thick; the tubules contained Sertoli cells with heterogeneous inclusions and large numbers of lipid droplets. A small number of Leydig cells was found at Day 14 and their numbers increased so that, in animals of 28 days and older, large clusters of Leydig cells were present between severely atrophic tubules. These tubules contained Sertoli cells with few organelles; germinal cells were not observed after 28 days in EDS-treated animals. These results show that EDS destroys the fetal population of Leydig cells postnatally and this mimics the well documented effect of EDS on adult Leydig cells. The seminiferous tubules were permanently damaged by EDS in the present experiments. Tubular damage could have been due to a direct cytotoxic effect of multiple injections of EDS on the tubule before the blood-testis barrier develops or due to withdrawal of androgen support secondary to Leydig cell destruction.  相似文献   

3.
4.
We characterized pharmacologically the hypersensitive cell death of tobacco BY-2 cells that followed treatments with Escherichia coli preparations of INF1, the major secreted elicitin of the late blight pathogen Phytophthora infestans. INF1 elicitin treatments resulted in fragmentation and 180 bp laddering of tobacco DNA as early as 3 h post-treatment. INF1 elicitin also induced rapid accumulation of H2O2 typical of oxidative burst, and the expression of defense genes such as phenylalanine ammonia-lyase (PAL) gene at 1 h and 3 h after elicitin treatment, respectively. To investigate the involvement of the oxidative burst and/or the expression of defense genes in the signal transduction pathways leading to hypersensitive cell death, we analyzed the effect of several chemical inhibitors of signal transduction pathways on the various responses. The results indicated that (a) the cell death required serine proteases, Ca2+ and protein kinases, (b) the oxidative burst was involved in Ca2+ and protein kinase mediated pathways, but elicitin-induced AOS was neither necessary nor sufficient for cell death and PAL gene expression, and (c) the signaling pathway of PAL gene expression required protein kinases. These results suggest that the three signal transduction pathways leading to cell death, oxidative burst and expression of defense genes branch in the early stages that follow elicitin recognition by tobacco cells.  相似文献   

5.
The development of a new population of Leydig cells after specific elimination of existing Leydig cells in mature rats by ethylene dimethanesulphonate (EDS) was characterized by investigating the testicular activities of 5 alpha-reductase and non-specific esterase, the serum concentrations of 3 alpha-androstanediol and testosterone and the Leydig cell morphology. Plasma concentrations of both androgens were strongly reduced up to 15 days after administration of EDS. Thereafter, in contrast to the gradual and continuous increase of serum testosterone values, the changes in serum 3 alpha-androstanediol were transient, with the highest level on Day 35. The temporal pattern of testicular 5 alpha-reductase activity was almost similar to that of serum 3 alpha-androstanediol. The testicular esterase activity increased gradually from Day 25 until Day 76. The temporal changes in steroid concentrations and enzyme activities after EDS administration indicate that the development of the Leydig cells in EDS-treated rats occurs in a fashion similar to that in pubertal rats. However, the numerous lipid droplets and large nuclei in these Leydig cells indicate that these cells may also be classified as fetal cells. It is concluded that, after treatment with EDS, fetal and pubertal characteristics are present in Leydig cells. It is, however, unknown whether both characteristics are present in one or in two distinct cell populations.  相似文献   

6.
7.
8.
9.
Structure and expression of the rat relaxin-like factor (RLF) gene.   总被引:3,自引:0,他引:3  
The relaxin-like factor (RLF) is a novel member of the insulin-IGF-relaxin family of growth factors and hormones, and its mRNA is expressed very specifically in the Leydig cells of the testis and in the theca and luteal cells of the ovary. Here we report the cloning of the RLF gene and cDNA from the rat. The 0.8kb mRNA is produced from a small gene comprising two exons situated less than 1 kb downstream of the gene for the signalling factor JAK3. Northern hybridization confirms high RLF mRNA expression in the adult rat testis, and low expression in the ovary, but in no other tissues examined. Northern analysis of fetal and neonatal gonadal tissues showed that RLF mRNA is highly upregulated in the testes of day 19 embryos, but not in later neonatal stages, nor in any ovarian tissue from this period. This would indicate that RLF is a marker for the mature fetal as well as the adult-type Leydig cell, but is not expressed in premature, precursor, or dedifferentiated Leydig cells of either cell type. Finally, RNA was analysed from the testes of rats which had been treated with ethylene dimethane sulfonate (EDS), an alkylating agent that specifically destroys rat Leydig cells. RLF mRNA was absent from the acutely treated testes, but became detectable between 15 and 20 days post-treatment, concomitant with the repopulation of the testes by new Leydig cells. Continuous testosterone substitution of EDS-treated rats suppressed the production of gonadotropins, and LH-dependent Leydig cell differentiation, with the result that RLF mRNA remained undetectable throughout the study period. In conclusion, RLF is a very specific marker for the mature Leydig cell phenotype in both the adult-type and fetal Leydig cell populations of the rat testis.  相似文献   

10.
Cardiac oxidative stress is developed following myocardial infarction (MI) particularly in the first week of MI. The influence of reactive oxygen species (ROS) on gene expression profiling and molecular pathways in the infarcted myocardium remains uncertain and is explored in the present study. Rats with MI were treated with or without antioxidants for 1 week. Normal rats served as controls. Cardiac oxidative stress and gene profiling were investigated. Compared to normal hearts, malondialdehyde, a marker of oxidative stress, was significantly increased in the infarcted myocardium, which was significantly suppressed by antioxidants. Microarray assay showed that over a thousand genes were differentially expressed in the infarcted myocardium. Antioxidants significantly altered the expression of 159 genes compared to untreated MI rats. Ingenuity pathway analysis indicated that multiple pathway networks were affected by antioxidants, including those related to cell movement, growth/development, death, and inflammatory/fibrotic responses. IPA further identified that these changes were primarily related to NFκB, p38 MAPK, and ERκ1/2 pathways. Hub genes were identified in the associated gene networks. This study reveals the gene networks associated with cardiac oxidative stress postMI. These observations indicate that ROS regulate various molecular and cellular actions related to cardiac repair/remodeling through multiple gene networks.  相似文献   

11.
Androgens are especially important for the maintenance of spermatogenesis in adulthood and the experimental withdrawal of testosterone (T) production by ethane dimenthanesulfonate (EDS) is a valuable tool for studying androgen-dependent events of spermatogenesis. The aim of the present study was to investigate the specific changes in immunoexpression of androgen receptor (AR) in the testis in relation to degeneration and regeneration of Leydig cell (LC) population and seminiferous epithelium. Immunohistochemistry for AR and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) as well as TUNEL assay for apoptosis were performed on testicular sections of control and EDS-treated rats. Serum LH and T levels were measured by RIA. Our results revealed a total loss of AR immunoexpression from the nuclei of Sertoli (SCs), LCs and peritubular cells during the first week after EDS administration and that coincided with severe drop in T levels. Two weeks after EDS administration, the AR expression was recovered in these cells but normal stage-specificity in SCs was replaced by uniform intensity of AR immunostaining at all the stages of the spermatogenic cycle. The stage-specific pattern of androgen expression in SCs with a maximum at stages VII-VIII appeared 5 weeks after treatment. LC immunoreactivity for 3beta-HSD at different time points after EDS administration correlated with values of T concentration. The maximal germ cell apoptosis on day 7 was followed by total loss of elongated spermatids 2 weeks after EDS treatment. Regeneration of seminiferous epithelium 3 weeks after EDS administration and onwards occurred in tandem with the development of new LC population indicated by the appearance of 3beta-HSD-positive cells and gradual increase in T production. The specific changes in AR after EDS including their loss and recovery in Sertoli cells paralleled with degenerative and regenerative events in Leydig and germ cell populations, confirming close functional relationship between Sertoli, Leydig and germ cells.  相似文献   

12.
Administration of ethane dimethane sulphonate (EDS) to adult rats results in the destruction of all Leydig cells, followed by a complete regeneration. We investigated this regeneration process in more detail, using different markers for precursor and developing Leydig cells: the LH receptor, 3beta-hydroxysteroid dehydrogenase (3beta-HSD), transforming growth factor alpha (TGFalpha), and a new marker for Leydig cell maturation, relaxin-like factor (RLF). LH receptor immunoreactivity was found in Leydig cell-depleted testes at 3 and 8 days after EDS administration. The positive (precursor) cells had a mesenchymal-like morphology. The number of LH receptor-positive cells 8 days after EDS administration was 15 +/- 4 per 500 Sertoli cell nuclei. Fifteen days after EDS administration, the first new Leydig cells could be observed. These cells stained positively with both the antibodies against the LH receptor and 3beta-HSD, while some cells also stained positively for TGFalpha. After EDS administration, RLF mRNA disappeared from the testis and reappeared again at the time of the appearance of the first Leydig cells. Concomitant with the increase in the number of Leydig cells, the number of RLF-expressing cells increased. The observations of the present study give further support to the hypothesis that Leydig cell development in the prepubertal testis, and in the adult testis following EDS administration, takes place along the same cell lineage and suggest, therefore, that the adult EDS-treated rat can serve as a model for studying the adult-type Leydig cell development that normally occurs in the prepubertal rat testis.  相似文献   

13.
14.
The postnatal development of Leydig cell precursors is postulated to be controlled by Sertoli cell secreted factors, which may have a determinative influence on Leydig cell number and function in sexually mature animals. One such hormone, Mullerian inhibiting substance (MIS), has been shown to inhibit DNA synthesis and steroidogenesis in primary Leydig cells and Leydig cell tumor lines. To further delineate the effects of MIS on Leydig cell proliferation and steroidogenesis, we employed the established ethylene dimethanesulphonate (EDS) model of Leydig cell regeneration. Following EDS ablation of differentiated Leydig cells in young adult rats, recombinant MIS or vehicle was delivered by intratesticular injection for 4 days (Days 11-14 after EDS). On Days 15 and 35 after EDS (1 and 21 days post-MIS injections), endocrine function was assessed and testes were collected for stereology, immunohistochemistry, and assessment of proliferation and steroidogenesis. Although serum testosterone and luteinizing hormone (LH) were no different, intratesticular testosterone was higher on Day 35 in MIS-treated animals. At both time points, intratesticular 5alpha-androstan-3alpha,17beta-diol concentrations were much higher than that of testosterone. MIS-treated animals had fewer mesenchymal precursors on Day 15 and fewer differentiated Leydig cells on Day 35 with decreased numbers of BrdU+ nuclei. Apoptotic interstitial cells were observed only in the MIS-treated testes, not in the vehicle-treated group on Day 15. These data suggest that MIS inhibits regeneration of Leydig cells in EDS-treated rats by enhancing apoptotic cell death as well as by decreasing proliferative capacity.  相似文献   

15.
DNA methylation can regulate gene expression and has been shown to modulate cancer cell biology and chemotherapy resistance. Therapeutic radiation results in a biological response to counter the subsequent DNA damage and genomic stress in order to avoid cell death. In this study, we analyzed DNA methylation changes at >450,000 loci to determine a potential epigenetic response to ionizing radiation in MDA-MB-231 cells. Cells were irradiated at 2 and 6 Gy and analyzed at 7 time points from 1–72 h. Significantly differentially methylated genes were enriched in gene ontology categories relating to cell cycle, DNA repair, and apoptosis pathways. The degree of differential methylation of these pathways varied with radiation dose and time post-irradiation in a manner consistent with classical biological responses to radiation. A cell cycle arrest was observed 24 h post-irradiation and DNA damage, as measured by γH2AX, resolved at 24 h. In addition, cells showed low levels of apoptosis 2–48 h post-6 Gy and cellular senescence became significant at 72 h post-irradiation. These DNA methylation changes suggest an epigenetic role in the cellular response to radiation.  相似文献   

16.
17.
18.
To understand the molecular mechanism(s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the spaceflown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several Gl-phase cell cycle traverse genes. Other genes showing upregulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.  相似文献   

19.
Ethane 1,2-dimethane sulphonate (EDS) is an alkylating agent, which has a selective cytotoxic effect on Leydig cells in some mammalian species. Similarly, in the frog, Rana esculenta, Leydig cells are destroyed after a single EDS injection and regenerate after 28 days. Regeneration of Leydig cells in frogs appears to be independent of the pituitary. The present experiments in R. esculenta were carried out: a) to investigate Leydig cell responsiveness to gonadotropin stimulation during 58 days after a single EDS injection; and b) to assess whether four consecutive EDS injections induce additional effects on the testicular cell population. Our results show that androgen stimulation after gonadotropin injections is restored after 44 days from a single EDS injection. Since the interstitial compartment appears to be normal at least 28 days after EDS treatment, it is likely that new Leydig cells lack gonadotropin receptors. With respect to multiple-EDS injections, Leydig cells completely disappear in several areas and the adjacent germinal compartment is disorganised. In some cases damaged germinal compartment is still surrounded by intact Leydig cells. Surprisingly, testicular and plasma androgens strongly increase in EDS-treated animals. Therefore, Sertoli cells may produce substances inhibiting androgen production in Leydig cells. J. Exp. Zool. 287:384-393, 2000.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号