Constitutive expression of mRNA was seen for the vesicular glutamate transporter brain-specific Na(+)-dependent inorganic phosphate cotransporter (BNPI), but not differentiation-associated Na(+)-dependent inorganic phosphate cotransporter, in rat calvarial osteoblasts cultured for 7 and 21 days in vitro (DIV). Three different agonists for ionotropic glutamate receptors (iGluR) at 1mM, as well as 50mM KCl, significantly increased the release of endogenous L-glutamate from osteoblasts cultured for 7DIV when determined 5 min after the addition by using a high performance liquid chromatograph. The inhibitor of desensitization of DL-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA) receptors cyclothiazide significantly potentiated and prolonged the release of endogenous L-glutamate evoked by AMPA in a dose-dependent manner. The release evoked by AMPA was significantly prevented by the addition of an AMPA receptor antagonist as well as by the removal of Ca(2+) ions. These results suggest that endogenous L-glutamate could be released from intracellular vesicular constituents associated with BNPI through activation of particular iGluR subtypes expressed in cultured rat calvarial osteoblasts. 相似文献
The loss of ATP, which is needed for ionic homeostasis, is an early event in the neurotoxicity of glutamate and beta-amyloid (A(beta)). We hypothesize that cells supplemented with the precursor creatine make more phosphocreatine (PCr) and create larger energy reserves with consequent neuroprotection against stressors. In serum-free cultures, glutamate at 0.5-1 mM was toxic to embryonic hippocampal neurons. Creatine at >0.1 mM greatly reduced glutamate toxicity. Creatine (1 mM) could be added as late as 2 h after glutamate to achieve protection at 24 h. In association with neurotoxic protection by creatine during the first 4 h, PCr levels remained constant, and PCr/ATP ratios increased. Morphologically, creatine protected against glutamate-induced dendritic pruning. Toxicity in embryonic neurons exposed to A(beta) (25-35) for 48 h was partially prevented by creatine as well. During the first 6 h of treatment with A(beta) plus creatine, the molar ratio of PCr/ATP in neurons increased from 15 to 60. Neurons from adult rats were also partially protected from a 24-h exposure to A(beta) (25-35) by creatine, but protection was reduced in neurons from old animals. These results suggest that fortified energy reserves are able to protect neurons against important cytotoxic agents. The oral availability of creatine may benefit patients with neurodegenerative diseases. 相似文献
Excitatory amino acid transporters (EAATs) mediate the uptake of glutamate into neuronal and glial cells of the mammalian central nervous system. Two transporters expressed primarily in glia, EAAT1 and EAAT2, are crucial for glutamate homeostasis in the adult mammalian brain. Three neuronal transporters (EAAT3, EAAT4, and EAAT5) appear to have additional functions in regulating and processing cellular excitability. EAATs are assembled as trimers, and the existence of multiple isoforms raises the question of whether certain isoforms can form hetero-oligomers. Co-expression and pulldown experiments of various glutamate transporters showed that EAAT3 and EAAT4, but neither EAAT1 and EAAT2, nor EAAT2 and EAAT3 are capable of co-assembling into heterotrimers. To study the functional consequences of hetero-oligomerization, we co-expressed EAAT3 and the serine-dependent mutant R501C EAAT4 in HEK293 cells and Xenopus laevis oocytes and studied glutamate/serine transport and anion conduction using electrophysiological methods. Individual subunits transport glutamate independently of each other. Apparent substrate affinities are not affected by hetero-oligomerization. However, polarized localization in Madin-Darby canine kidney cells was different for homo- and hetero-oligomers. EAAT3 inserts exclusively into apical membranes of Madin-Darby canine kidney cells when expressed alone. Co-expression with EAAT4 results in additional appearance of basolateral EAAT3. Our results demonstrate the existence of heterotrimeric glutamate transporters and provide novel information about the physiological impact of EAAT oligomerization. 相似文献
The glutamate transporter inhibitor, L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) reversibly enhanced hippocampal neuronal activity in the rat and mouse dentate gyrus. The PDC action was still found in mice lacking the glial glutamate transporter GLT-1. PDC did not influence the rate of spontaneous miniature excitatory postsynaptic currents and spontaneous inhibitory postsynaptic currents, ionotropic glutamate receptor currents, or GABA-evoked currents in cultured rat hippocampal neurons. PDC increased glutamate released from cultured hippocampal astrocytes from normal rats, normal mice, and GLT-1 knock-out mice, that is not inhibited by deleting extracellular Na(+), while the drug had no effect on the release from cultured rat hippocampal neurons. The results of the present study thus suggest that PDC stimulates glial glutamate release by a mechanism independent of inhibiting glutamate transporters, which perhaps causes an increase in synaptic glutamate concentrations, in part responsible for the enhancement in hippocampal neuronal activity. 相似文献
The last decade has witnessed advances in understanding the roles of receptors of neurotrophin and glutamate in the vestibular system. In the first section of this review, the biological actions of neurotrophins and their receptors in the peripheral and central vestibular systems are summarized. Emphasis will be placed on the roles of neurotrophins in developmental plasticity and in the maintenance of vestibular function in the adult animal. This is reviewed in relation to the developmental expression pattern of neurotrophins and their receptors within the vestibular nuclei. The second part is focused on the functional role of different glutamate receptors on central vestibular neurons. The developmental expression pattern of glutamate receptor subunits within the vestibular nuclei is reviewed in relation to the potential role of glutamate receptors in regulating the development of vestibular function. 相似文献
Kainate receptors form a family of ionotropic glutamate receptors that appear to play a special role in the regulation of the activity of synaptic networks. This review first describes briefly the molecular and pharmacological properties of native and recombinant kainate receptors. It then attempts to outline the general principles that appear to govern the function of kainate receptors in the activity of synaptic networks under physiological conditions. It subsequently describes the way that kainate receptors are involved in synaptic integration, synaptic plasticity, the regulation of neurotransmitter release and the control of neuronal excitability, and the manner in which they might play an important role in synaptogenesis and synaptic maturation. These functions require the proper subcellular localization of kainate receptors in specific functional domains of the neuron, necessitating complex cellular and molecular trafficking events. We show that our comprehension of these mechanisms is just starting to emerge. Finally, this review presents evidence that implicates kainate receptors in pathophysiological conditions such as epilepsy, excitotoxicity and pain, and that shows that these receptors represent promising therapeutic targets.The work performed in the lab of C. Mulle was supported by grants from the Centre National de la Recherche Scientifique, by the French Ministry of Research and by the EU commission (contracts QLRT-2000-02089 and 2005-511995). 相似文献
Emerging evidence suggests that metabotropic glutamate receptors (mGluRs) are potential novel targets for brain disorders associated with the dysfunction of prefrontal cortex (PFC), a region critical for cognitive and emotional processes. Because N-methyl-D-aspartic acid receptor (NMDAR) dysregulation has been strongly associated with the pathophysiology of mental illnesses, we examined the possibility that mGluRs might be involved in modulating PFC functions by targeting postsynaptic NMDARs. We found that application of prototypical group III mGluR agonists significantly reduced NMDAR-mediated synaptic and ionic currents in PFC pyramidal neurons, which was mediated by mGluR7 localized at postsynaptic neurons and involved the β-arrestin/ERK signaling pathway. The mGluR7 modulation of NMDAR currents was prevented by agents perturbing actin dynamics and by the inhibitor of cofilin, a major actin-depolymerizing factor. Consistently, biochemical and immunocytochemical results demonstrated that mGluR7 activation increased cofilin activity and F-actin depolymerization via an ERK-dependent mechanism. Furthermore, mGluR7 reduced the association of NMDARs with the scaffolding protein PSD-95 and the surface level of NMDARs in an actin-dependent manner. These data suggest that mGluR7, by affecting the cofilin/actin signaling, regulates NMDAR trafficking and function. Because ablation of mGluR7 leads to a variety of behavioral symptoms related to PFC dysfunction, such as impaired working memory and reduced anxiety and depression, our results provide a potential mechanism for understanding the role of mGluR7 in mental health and disorders. 相似文献
Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1–10 mM. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress. 相似文献
Glutamate receptors are the major excitatory neurotransmitter receptors in the central nervous system. A variety of data has recently suggested that protein phosphorylation of glutamate receptors regulates their function. To examine at a molecular level the role of protein phosphorylation in the modification of glutamate receptors, we have transiently expressed the non-NMDA glutamate receptor subunit GluR1 (flop) in human embryonic kidney 293 cells. Using a polyclonal antipeptide antiserum directed specifically against GluR1, we have immunoprecipitated a 106 kDa phosphoprotein corresponding to the GluR1 subunit. Phosphoamino acid analysis and thermolytic peptide mapping demonstrate that this basal phosphorylation occurs exclusively on serine residues in two phosphopeptides. Application of activators of endogenous cAMP-dependent protein kinase or protein kinase C revealed no consistant changes in the phosphorylation of GluR1. However, coexpression of the GluR1 subunit with the well characterized protein tyrosine kinase v-src results in phosphorylation of GluR1 on tyrosine residues, in a single thermolytic phosphopeptide. These results suggest that GluR1 may be a substrate for protein serine/threonine kinases as well as protein tyrosine kinases in the central nervous system.Abbreviations AMPA
-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
- CNS
central nervous system
- NMDA
N-methyl-D-aspartate;
- PAGE
polyacrylamide gel electrophoresis
- PBS
phosphate-buffered saline
- PMSF
phenylmethylsulfonyl fluoride
- SDS
sodium dodecyl sulfate
- TBS
Tris-buffered saline
- TPA
phorbol 12-myristate-13-acetate
Special issue dedicated to Dr. Paul Greengard. 相似文献
The G protein-coupled metabotropic glutamate (mGlu) receptors are differentially localized at various synapses throughout the brain. Depending on the receptor subtype, they appear to be localized at presynaptic and/or postsynaptic sites, including glial as well as neuronal elements. The heterogeneous distribution of these receptors on glutamate and nonglutamate neurons/cells thus allows modulation of synaptic transmission by a number of different mechanisms. Electrophysiological studies have demonstrated that the activation of mGlu receptors can modulate the activity of Ca(2+) or K(+) channels, or interfere with release processes downstream of Ca(2+) entry, and consequently regulate neuronal synaptic activity. Such changes evoked by mGlu receptors can ultimately regulate transmitter release at both glutamatergic and nonglutamatergic synapses. Increasing neurochemical evidence has emerged, obtained from in vitro and in vivo studies, showing modulation of the release of a variety of transmitters by mGlu receptors. This review addresses the neurochemical evidence for mGlu receptor-mediated regulation of neurotransmitters, such as excitatory and inhibitory amino acids, monoamines, and neuropeptides. 相似文献
Somatodendritic voltage-dependent K+ currents (Kv4.2) channels mediate transient A-type K+ currents and play critical roles in controlling neuronal excitability. Accumulating evidence has indicated that Kv4.2 channels are key regulatory components of the signaling pathways that lead to synaptic plasticity. In contrast to the extensive studies of glutamate-induced AMPA [(±) α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate] receptors redistribution, less is known about the regulation of Kv4.2 by glutamate. In this study, we report that brief treatment with glutamate rapidly reduced total Kv4.2 levels in cultured hippocampal neurons. The glutamate effect was mimicked by NMDA, but not by AMPA. The effect of glutamate on Kv4.2 was dramatically attenuated by pre-treatment of NMDA receptors antagonist MK-801 [(5 S ,10 R )-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate] or removal of extracellular Ca2+. Immunocytochemical analysis showed a loss of Kv4.2 clusters on the neuronal soma and dendrites following glutamate treatment, which was also dependent on the activation of NMDA receptors and the influx of Ca2+. Furthermore, whole-cell patch-clamp recordings revealed that glutamate caused a hyperpolarized shift in the inactivation curve of A-type K+ currents, while the activation curve remained unchanged. These results demonstrate a glutamate-induced alteration of Kv4.2 channels in cultured hippocampal neurons, which might be involved in activity-dependent changes of neuronal excitability and synaptic plasticity. 相似文献
At the glutamatergic synapse the neurotransmitter is removed from the synaptic cleft by high affinity amino acid transporters located on neurons (EAAC1) and astrocytes (GLAST and GLT1), and a coordinated action of these cells is necessary in order to regulate glutamate extracellular concentration. We show here that treatment of neuronal cultures with glial soluble factors (GCM) is associated with a redistribution of EAAC1 and GLAST to the cell membrane and we analysed the effect of membrane cholesterol depletion on this regulation.
In enriched neuronal culture (90% neurons and 10% astrocytes), GCM treatment for 10 days increases EAAC1 and GLAST cell surface expression with no change in total expression. In opposite, GLT1 surface expression is not modified by GCM but total expression is increased. When cholesterol is acutely depleted from the membrane by 10 mM methyl-beta-cyclodextrin (β5-MCD, 30 min), glutamate transport activity and cell surface expressions of EAAC1 and GLAST are decreased in the enriched neuronal culture treated by GCM. In pure neuronal culture addition of GCM also increases EAAC1 cell membrane expression but surprisingly acute treatment with β5-MCD decreases glutamate uptake activity but not EAAC1 cell membrane expression. By immunocytochemistry a modification in the distribution of EAAC1 within neurons was undetectable whatever the treatment but we show that EAAC1 was no more co localized with Thy-1 in the enriched neuronal culture treated by GCM suggesting that GCM have stimulated polarity formation in neurons, an index of maturation.
In conclusion we suggest that different regulatory mechanisms are involved after GCM treatment, glutamate transporter trafficking to and from the plasma membrane in enriched neuronal culture and modulation of EAAC1 intrinsic activity and/or association with regulatory proteins at the cell membrane in the pure neuronal culture. These different regulatory pathways of EAAC1 are associated with different neuronal maturation stages. 相似文献
In the post-Genome era, new concepts emerge about the growth regulation of uterine leiomyomata. Screening of leiomyoma and myometrial tissues with DNA arrays revealed numerous genes up-regulated in leiomyomata that were not known to be expressed in the human uterus. GluR2, a subunit of a ligand-gated cation channel, is up-regulated in leiomyomata relative to myometrium by 15- to 30-fold at the protein and mRNA level and is localized in endothelial cells. GluR2 pre-mRNA in leiomyoma and myometrial tissues is nearly 100% edited at the Q/R site, indicative of low Ca(2+) permeability of the ion channels. In spontaneous leiomyomata in women or leiomyomata induced in the guinea pig model, there is a likely synergism linking increased production of estradiol and all-trans retinoic acid with up-regulation of nuclear receptor PPARgamma and RXRalpha proteins to support tumor growth. GluR2 might be coupled to this synergism directly or via interleukin-17B, kinesin KIF5 or related genes also up-regulated in leiomyomata. GluR antagonists should be tested as inhibitors of leiomyoma growth. 相似文献
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of14CO2 production from [U–14C]glutamate, [U–14C]aspartate and [1–14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of -ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons. 相似文献
BMAA is a cycad-derived glutamate receptor agonist that causes a two- to three-fold increase in hypocotyl elongation on Arabidopsis seedlings grown in the light. To probe the role of plant glutamate receptors and their downstream mediators, we utilized
a previously described genetic screen to identify a novel, BMAA insensitive morphology (bim) mutant, bim409. The normal BMAA-induced hypocotyl elongation response observed on wild-type seedlings grown in the light is impaired in
the bim409 mutant. This BMAA-induced phenotype is light-specific, as the bim409 mutant exhibits normal hypocotyl elongation in etiolated (dark grown) plants (+ or − BMAA). The mutation in bim409 was identified to be in a gene encoding the ProteosomalRegulatory Particle AAA-ATPase-3 (RPT3). Possible roles of the proteosome in Glu-mediated signaling in plants is discussed.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
Mutations in the ATP13A2 gene are associated with Kufor-Rakeb syndrome (KRS) and are found also in patients with various other types of parkinsonism. ATP13A2 encodes a predicted lysosomal P5-type ATPase that plays important roles in regulating cation homeostasis. Disturbance of cation homeostasis in brains is indicated in Parkinson disease pathogenesis. In this study, we explored the biological function of ATP13A2 as well as the pathogenic mechanism of KRS pathogenic ATP13A2 mutants. The results revealed that wild-type ATP13A2, but not the KRS pathogenic ATP13A2 mutants, protected cells from Mn(2+)-induced cell death in mammalian cell lines and primary rat neuronal cultures. In addition, wild-type ATP13A2 reduced intracellular manganese concentrations and prevented cytochrome c release from mitochondria compared with the pathogenic mutants. Furthermore, endogenous ATP13A2 was up-regulated upon Mn(2+) treatment. Our results suggest that ATP13A2 plays important roles in protecting cells against manganese cytotoxicity via regulating intracellular manganese homeostasis. The study provides a potential mechanism of KRS and parkinsonism pathogenesis. 相似文献
The effects of a kappa-opioid receptor agonist on acute amphetamine-induced behavioral activation and dialysate levels of dopamine and glutamate in the ventral striatum were investigated. Amphetamine (2.5 mg/kg i.p.) evoked a substantial increase in rearing, sniffing, and hole-poking behavior as well as dopamine and glutamate levels in the ventral striatum of awake rats. U-69593 (0.32 mg/kg s.c.) significantly decreased the amphetamine-evoked increase in behavior and dopamine and glutamate levels in the ventral striatum. Reverse dialysis of the selective kappa-opioid receptor antagonist, nor-binaltorphimine, into the ventral striatum antagonized the effects of U-69593 on amphetamine-induced behavior and dopamine and glutamate levels. Reverse dialysis of low calcium (0.1 mM) into the ventral striatum decreased basal dopamine, but not glutamate, dialysate levels by 91% 45 min after initiation of perfusion. Strikingly, 0.1 mM calcium perfusion significantly reduced the 2.5 mg/kg amphetamine-evoked increase in dopamine and glutamate levels in the ventral striatum, distinguishing a calcium-dependent and a calcium-independent component of release. U-69593 did not alter the calcium-independent component of amphetamine-evoked dopamine and glutamate levels. These data are consistent with the view that a transsynaptic mechanism augments the increase in dopamine and glutamate levels in the ventral striatum evoked by a moderately high dose of amphetamine and that stimulation of kappa-opioid receptors suppresses the calcium-dependent component of amphetamine's effects. 相似文献