首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study, the author developed a method for separation of the tegument of spargana (plerocercoids of Spirometra mansoni) from the parenchyme using urea. The present study, as a next step, was performed to evaluate which molecules are present in the outer tegument. Two major proteins, 180 and 200 kDa, are present in the tegument and we could make polyclonal antibodies against these molecules. Their immunolocalization was processed and the outermost layer of the spargana showed strong positive staining. Conclusively, we could confirm that the 180 and 200 kDa molecules might be tightly bound membrane proteins in the tegument of spargana.  相似文献   

2.
The 8 kDa antigenic protein of Clonorchis sinensis was partially purified by ammonium sulfate precipitation and subsequently by a column chromatographic steps. The purified protein was separated into 7 and 8 kDa protein bands through SDS-tricine gel electrophoresis, while the protein was found to migrate to a 8 kDa band in 7.5-15% SDS-PAGE. The molecular weight of the antigen was estimated to be 110 kDa by Superose 6 HR 10/30 gel filtration. The purified antigen strongly reacted with the human sera of clonorchiasis. The hyperimmune sera of BALB/c mice immunized against the 8 kDa protein were reacted with both the crude extract and the excretory-secretory product of adult worms, but not with the metacercarial extract. Immunohistochemical staining demonstrated that the protein was distributed to the tegument and subtegumental cells and also to the seminal receptacle. The present findings suggest that the 8 kDa protein is a partition of the multicomplex protein originating from various organs of adult C. sinensis, and that it is composed of several 7 and 8 kDa proteins.  相似文献   

3.
In the course of Clonorchis sinensis infection, antigens presented to the hosts may be in a close relation to growth of the fluke. The antigenic proteins stimulating IgG antibody production were chronologically identified by immunoblot and localized by immunohistochemical staining. In the early stage of infection until 12 weeks post-infection (PI), antigens were proteins with molecular mass larger than 34 kDa which were derived from the tegument, testes and intrauterine eggs. After 20 weeks PI, antigens recognized were 29, 27 and 26 kDa proteins from the intestine, excretory bladder and reproductive organs. It is suggested that the tegumental proteins are the most potent antigens and the excretory-secretory proteins with middle molecular mass of 26-45 kDa contribute to the high level production of antibodies after 20 weeks of the C. sinensis infection.  相似文献   

4.
Human cytomegalovirus (HCMV) is the most genetically and structurally complex human herpesvirus and is composed of an envelope, a tegument, and a dsDNA-containing capsid. HCMV tegument plays essential roles in HCMV infection and assembly. Using cryo electron tomography (cryoET), here we show that HCMV tegument compartment can be divided into two sub-compartments: an inner and an outer tegument. The inner tegument consists of densely-packed proteins surrounding the capsid. The outer tegument contains those components that are loosely packed in the space between the inner tegument and the pleomorphic glycoprotein-containing envelope. To systematically characterize the inner tegument proteins interacting with the capsid, we used chemical treatment to strip off the entire envelope and most tegument proteins to obtain a tegumented capsid with inner tegument proteins. SDS-polyacrylamide gel electrophoresis analyses show that only two tegument proteins, UL32-encoded pp150 and UL48-encoded high molecular weight protein (HMWP), remains unchanged in their abundance in the tegumented capsids as compared to their abundance in the intact particles. Three-dimensional reconstructions by single particle cryo electron microscopy (cryoEM) reveal that the net-like layer of icosahedrally-ordered tegument densities are also the same in the tegumented capsid and in the intact particles. CryoET reconstruction of the tegumented capsid labeled with an anti-pp150 antibody is consistent with the biochemical and cryoEM data in localizing pp150 within the ordered tegument. Taken together, these results suggest that pp150, a betaherpesvirus-specific tegument protein, is a constituent of the net-like layer of icosahedrally-ordered capsid-bound tegument densities, a structure lacking similarities in alpha and gammaherpesviruses.  相似文献   

5.
Exposed proteins of the Schistosoma japonicum tegument   总被引:1,自引:0,他引:1  
The ability of the mammalian blood fluke Schistosoma japonicum to survive in the inhospitable environment of the mammalian bloodstream can be attributed, at least in part, to its host-exposed outer surface, called the tegument. The tegument is a dynamic organ and is involved in nutrition, immune evasion and modulation, excretion, osmoregulation and signal transduction. Given its importance for parasite survival, proteins exposed to the host at the surface of the tegument are ideal targets for the development of vaccines and drugs. By biotinylating live adult worms and using a combination of OFFGEL electrophoresis and tandem mass spectrometry 54 proteins were identified as putatively host-exposed in S. japonicum. These included glucose transport proteins, an amino permease, a leucine aminopeptidase and a range of transporters, heat shock proteins and novel immune-active proteins. Members of the tetraspanin protein family and a homologue of Sm 29, a tegument membrane protein from Schistosoma mansoni, both effective vaccine antigens in S. mansoni, were also identified. The fate of labelled surface proteins was monitored over time using electron microscopy and revealed that biotinylated proteins were rapidly internalised from the surface of the tegument and trafficked into the cytoplasmic bridges that connect the distal cytoplasm of the tegument to the underlying cell bodies. The results reported herein dramatically increase the number of S. japonicum proteins known to be exposed to the host and, hence, those of interest as therapeutic targets. The ability of the parasite to rapidly internalise proteins at its surface has implications for the development of vaccines and may explain how these parasites are able to avoid the host immune system for long periods of time.  相似文献   

6.
Chickenpox(varicella) is caused by primary infection with varicella zoster virus(VZV), which can establish long-term latency in the host ganglion. Once reactivated, the virus can cause shingles(zoster) in the host. VZV has a typical herpesvirus virion structure consisting of an inner DNA core, a capsid, a tegument, and an outer envelope. The tegument is an amorphous layer enclosed between the nucleocapsid and the envelope, which contains a variety of proteins. However, the types and functions of VZV tegument proteins have not yet been completely determined. In this review, we describe the current knowledge on the multiple roles played by VZV tegument proteins during viral infection. Moreover, we discuss the VZV tegument protein-protein interactions and their impact on viral tissue tropism in SCID-hu mice. This will help us develop a better understanding of how the tegument proteins aid viral DNA replication, evasion of host immune response, and pathogenesis.  相似文献   

7.
The nematode surface coat is defined as an extracuticular component on the outermost layer of the nematode body wall, visualized only by electron microscopy. Surface coat proteins of Meloidogyne incognita race 3 infective juveniles were characterized by electrophoresis and Western blotting of extracts from radioiodine and biotin-labeled nematodes. Extraction of labeled nematodes with cetyltrimethylammonium bromide yielded a principal protein band larger than 250 kDa and, with water soluble biotin, several faint bands ranging from 31 kDa to 179 kDa. The pattern of labeling was similar for both labeling methods. Western blots of unlabeled proteins were probed with a panel of biotin-lectin conjugates, but only Concanavalin A bound to the principal band. Nematodes labeled with radioiodine and biotin released ¹²⁵I and biotin-labeled molecules into water after 20 hours incubation, indicating that surface coat proteins may be loosely attached to the nematode. Antiserum to the partially purified principal protein bound to the surface of live nematodes and to several proteins on Western blots. Differential patterns of antibody labeling were obtained on immuno-blots of extracts from M. incognita race 1, 2, and 3; Meloidogyne hapla race 2; and Meloidogyne arenaria cytological race B.  相似文献   

8.
The ultrastructure of the spinous body tegument of the metacercaria of Timoniella imbutiforme (Molin, 1859) has recently been described. Other regions of the metacercarial tegument, including those of the oral sucker, pharynx, and nephridiopore, demonstrate considerable specializations. The oral sucker tegument had an aspinous outer syncytial layer that possessed a pimpled apical surface as well as enclosing two types of secretory bodies. The pharyngeal tegument likewise lacked spines, but possessed only one type of secretory body, and a smooth but folded outer surface. The nephridiopore tegument, however, showed the greatest degree of specialization possessing a single type of secretory body specific only to this region of the tegument. Also associated with the syncytium here was a prominent long filamentous glycocalyx, and microtubules which were observed for the first time in this region of the tegument.  相似文献   

9.
The objective of this work is to identify proteins of the human and porcine parasite, Taenia solium, which may be exploited for control of the parasite. Through screening a cDNA library of T. solium metacestodes, we have identified a novel Sec-14-like Taenia lipid-binding protein that may play an important role in membrane trafficking. The Sec14-like sequence is a single copy gene, encoding a putative polypeptide of 320 amino acids and 36.1 kDa (sec14Tsol protein). Secondary amino acid structural analysis suggested that the sec14Tsol protein might contain two distinct structural domains, an amino-terminal alpha-helix rich domain and a mixed alpha-helix/beta-stand carboxy-terminal zone, showing homology with the conserved SEC14 domain found in a great number of proteins that bind lipids, as the regulators of membrane trafficking between Golgi membrane bilayers. Significantly, therefore, in a phosphoinositide-binding assay, sec14Tsol purified recombinant protein specifically interacted with important lipid regulators of membrane trafficking, with a preference for PI(3)P(2), PI(3,4)P(2), PI(4,5)P(2) and phosphatidic acid. Moreover, the sec14Tsol protein was localized in the Golgi apparatus of transfected cells and in the spiral canal region of T. solium metacestode tegument. As sec14Tsol protein may play an important role in membrane trafficking, its demonstrated localisation in the intact parasite tegument suggests its involvement in the function of the tegument and thus perhaps interaction with the host.  相似文献   

10.
Paramyosin is a myofibrillar protein present in helminth parasites and plays multifunctional roles in host-parasite interactions. In this study, we identified the gene encoding paramyosin of Clonorchis sinensis (CsPmy) and characterized biochemical and immunological properties of its recombinant protein. CsPmy showed a high level of sequence identity with paramyosin from other helminth parasites. Recombinant CsPmy (rCsPmy) expressed in bacteria had an approximate molecular weight of 100 kDa and bound both human collagen and complement 9. The protein was constitutively expressed in various developmental stages of the parasite. Imunofluorescence analysis revealed that CsPmy was mainly localized in the tegument, subtegumental muscles, and the muscle layer surrounding the intestine of the parasite. The rCsPmy showed high levels of positive reactions (74.6%, 56/75) against sera from patients with clonorchiasis. Immunization of experimental rats with rCsPmy evoked high levels of IgG production. These results collectively suggest that CsPmy is a multifunctional protein that not only contributes to the muscle layer structure but also to non-muscular functions in host-parasite interactions. Successful induction of host IgG production also suggests that CsPmy can be applied as a diagnostic antigen and/or vaccine candidate for clonorchiasis.  相似文献   

11.
The cell wall of Clostridium difficile GAI 4131 was revealed by electron microscopy to have an outer layer composed of a nearly square array and contained the two major proteins with molecular weights of 38 kDa and 42 kDa. The properties and reassembly of the two major proteins into the regular array were investigated. When the isolated cell walls were treated with hydrophobic bond-disrupting agents or a chelating agent specific for Ca2+, the two major proteins were effectively removed and the regularly arranged outer layer disappeared. The amino acid composition of the two major proteins differed from each other. The two major proteins also gave different peptide maps from each other upon proteolysis with Staphylococcus aureus V8 protease. The major proteins solubilized from the isolated cell walls with 8 M urea or 4 M guanidine hydrochloride could be reassembled into open-ended cylinders possessing the native regular pattern by dialysis against neutral buffer containing 5 mM CaCl2. The reassembled cylinders purified by centrifugation on a Percoll density gradient were composed of almost equal amounts of the 38 kDa and 42 kDa proteins and freed from the other proteins. These results suggest that the regular array in the outer cell wall layer is constructed from the two major cell wall proteins and requires Ca2+ for its assembly.  相似文献   

12.
Calcareous corpuscles are a characteristic structure found in larval and adult stage cestodes. These corpuscles are known to contain several protein components and to possess protein-binding activity. However, the proteins bound to calcareous corpuscles in situ have not been studied. The present study was undertaken to identify the proteins on calcareous corpuscles. Calcareous corpuscles were purified from the plerocercoids (= spargana) of Spirometra erinacei, and serially dissolved using 0.1 M sulfamic acid solution. Collected supernatants were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and silver staining. The results showed that only the fraction remaining after the 19th dissolved fraction contained proteins. A total of 20 protein molecules were detected in gel, with major bands at 56, 53, 46, 40, 35, 29, 28, 24.5, 21, 19, 16, 13, 10 and 8 kDa. In particular, the proteins corresponding to the 21 and 16 kDa bands were most abundant. Our results demonstrated for the first time the protein contents of the calcareous corpuscles of spargana. Further studies on the functions of these proteins are required.  相似文献   

13.
To examine humoral immune responses in the host, we measured serum antibody levels in different strains of mice (ICR, BALB/c, and C3H) experimentally infected with Neodiplostomum seoulense. Specific IgG antibody levels were increased remarkably with little difference among 3 strains of mice infected with N. seoulense from day 7 to 35 post-infection. More target proteins of adult parasites reacted with IgG at the time when the worm recovery decreased compared with other times. More than 20 protein bands, from 14 kDa to 94 kDa in size, were separated from the crude antigen of N. seoulense adults by SDS-PAGE, and among them 26, 30, 35, 43, 54, 67, and 94 kDa proteins were the major antigenic proteins. The results suggest that significant IgG antibody responses occur against N. seoulense in mice and this may be related with expulsion of worms.  相似文献   

14.
Antigenic proteins of 36 and 29 kDa were localized in Spirometra mansoni plerocercoid (sparganum) immunohistochemically by avidin biotin complex (ABC) staining. When polyclonal antibodies such as BALB/c mouse serum immunized with crude saline extract of sparganum or confirmed sparganosis sera were reacted as primary antibodies, the positive chromogen (3-amino, 9-ethylcarbazole) reactions were recognized at syncytial tegument, tegumental cells, muscle and parenchymal cells and lining cells of excretory canals. A monoclonal antibody (MAb) which was reacting to 36 and 29 kDa proteins in the extract of the worm was localized at the syncytial tegument and tegumental cells. The present results suggested that the potent antigenic proteins of 36 and 29 kDa in sparganum were produced at the tegumental cells and transported to the syncytial tegument.  相似文献   

15.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   

16.
J Fu  DM Glover 《Open biology》2012,2(8):120104
The increase in centrosome size in mitosis was described over a century ago, and yet it is poorly understood how centrioles, which lie at the core of centrosomes, organize the pericentriolar material (PCM) in this process. Now, structured illumination microscopy reveals in Drosophila that, before clouds of PCM appear, its proteins are closely associated with interphase centrioles in two tube-like layers: an inner layer occupied by centriolar microtubules, Sas-4, Spd-2 and Polo kinase; and an outer layer comprising Pericentrin-like protein (Dplp), Asterless (Asl) and Plk4 kinase. Centrosomin (Cnn) and γ-tubulin associate with this outer tube in G2 cells and, upon mitotic entry, Polo activity is required to recruit them together with Spd-2 into PCM clouds. Cnn is required for Spd-2 to expand into the PCM during this maturation process but can itself contribute to PCM independently of Spd-2. By contrast, the centrioles of spermatocytes elongate from a pre-existing proximal unit during the G2 preceding meiosis. Sas-4 is restricted to the microtubule-associated, inner cylinder and Dplp and Cnn to the outer cylinder of this proximal part. γ-Tubulin and Asl associate with the outer cylinder and Spd-2 with the inner cylinder throughout the entire G2 centriole. Although they occupy different spatial compartments on the G2 centriole, Cnn, Spd-2 and γ-tubulin become diminished at the centriole upon entry into meiosis to become part of PCM clouds.  相似文献   

17.
Herpesviruses have an icosahedral nucleocapsid surrounded by an amorphous tegument and a lipoprotein envelope. The tegument comprises at least 20 proteins destined for delivery into the host cell. As the tegument does not have a regular structure, the question arises of how its proteins are recruited. The herpes simplex virus 1 (HSV-1) tegument is known to contact the capsid at its vertices, and two proteins, UL36 and UL37, have been identified as candidates for this interaction. We show that the interaction is mediated exclusively by UL36. HSV-1 nucleocapsids extracted from virions shed their UL37 upon incubation at 37°C. Cryo-electron microscopy (cryo-EM) analysis of capsids with and without UL37 reveals the same penton-capping density in both cases. As no other tegument proteins are retained in significant amounts, it follows that this density feature (~100 kDa) represents the ordered portion of UL36 (336 kDa). It binds between neighboring UL19 protrusions and to an adjacent UL17 molecule. These observations support the hypothesis that UL36 plays a major role in the tegumentation of the virion, providing a flexible scaffold to which other tegument proteins, including UL37, bind. They also indicate how sequential conformational changes in the maturing nucleocapsid control the ordered binding, first of UL25/UL17 and then of UL36.  相似文献   

18.
GTP-binding proteins (GTPases) have been detected in the mitochondria of human placenta. It has been proposed that porin interacts with GTPases in the mitochondrion to modulate contact site function, however, their identity and location is not known. In this study, we investigated the location of GTPases in mitochondria from term placentae as well as the expression of mitochondrial GTPases in mid-term placentae. Mitochondria obtained from human term and mid-term placentae were purified by sedimentation. Sub-mitochondrial vesicles prepared from ruptured and sonicated mitochondria were separated by ultracentrifugation in sucrose density gradients. The location of membrane vesicles was determined using marker enzymes. Mitochondrial proteins were separated by SDS-PAGE. Western blots were incubated in [alpha-(32)P]-GTP and detected using autoradiography or antibodies against known GTPases and porin followed by enhanced chemiluminescence. [alpha-(32)P]-GTP bound 24 and 28 kDa proteins located in the outer membrane. The G(salpha)antibody detected 42.5, 53 and 67 kDa proteins. The G(ialpha)antibody identified a 40.5 kDa band in contact sites and the outer membrane, as well as 55 and 105 kDa proteins in contact site vesicles. The Ran antibody detected a 28 kDa protein, mainly in the outer membrane. Porin migrated at 30 kDa. G(ialpha)and Ran were detected in mitochondria from both term and mid-term placentae. The location of porin and GTPases leave open the possibility that these proteins interact in contact sites and may also be responding to extra-mitochondrial signals. Ran and G(ialpha)are expressed by mid-term in human placentae and may be necessary for placental functions at this stage of development. It will be important in future experiments to characterise the physiological functions of these GTP-binding proteins in the mitochondria of human placenta.  相似文献   

19.
Summary Enamel proteins were extracted from the newly formed layer of immature porcine enamel, and the 25 kDa amelogenin, 89 kDa enamelin and 13–17 kDa nonamelogenins were purified. Specific antisera were raised against these proteins. Antibodies specific to the C-terminal region (residues 149–173) of the 25 kDa amelogenin were generated by absorption of the anti-25 kDa amelogenin serum with 20 kDa amelogenin, which contains residues 1–148 of the antigen. Immunoelectrotransfer blotting of the extracted porcine enamel proteins showed that the anti-25 kDa amelogenin serum recognized the 25 kDa and other low and high molecular weight amelogenins. The C-terminal specific anti-25 kDa amelogenin serum reacted only with amelogenins having molecular weights over 23 kDa. The anti-89 kDa enamelin serum recognized the 89 kDa enamelin and lower molecular weight proteins, but neither the amelogenins nor the 13–17 kDa nonamelogenins. The antiserum against the 13–17 kDa nonamelogenins showed no cross reactivity to the 89 kDa enamelin, but recognized higher molecular weight nonamelogenins. In immunohistochemical preparations of the porcine tooth germs, the 25 kDa amelogenin-like immunoreactivity over immature enamel decreased in a gradient from the enamel surface to the middle layer. In the inner layer immunoreactivity was concentrated over the prism sheaths. The C-terminal specific 25 kDa amelogenin-like immunoreactivity was intense at the outer layer of immature enamel and decreased sharply toward the middle layer. Prism sheaths were intensely stained by the antiserum to the 13–17 kDa nonamelogenins. The 89 kDa enamelin-like immunoreactivity over enamel prisms was intense at the outer layer and decreased toward the middle layer. Staining by the anti-89 kDa enamelin serum of prism sheaths was faint. In immature rat incisor enamel, the C-terminal specific 25 kDa amelogenin antiserum demonstrated a staining pattern similar to that in the immature enamel of the pig. Distinct 13–17 kDa nonamelogenin-like and 89 kDa enamelin-like immunoreactivities were found especially in the layer adjacent to the Tomes' process. We conclude that some enamel proteins are degraded soon after their secretion from the secretory ameloblast in the rat and the pig. The specific enamel proteins which reacted with the antiserum to the 13–17 kDa nonamelogenins seem to be involved with the formation of prism sheaths in immature porcine enamel, but not in rat incisor enamel.  相似文献   

20.
The occurrence of a receptor for human LDL was investigated in the tegument of adult Schistosoma mansoni employing several approaches. Binding of LDL to SDS-PAGE fractionated tegument proteins was measured directly on nitro-cellulose membranes and visualised by an anti-human LDL antibody. Proteins with an Mr of 60, 35 and 14 kDa were evidenced. Affinity chromatography of 125 I-labelled tegument proteins on a LDL-Sepharose column, revealed the same pattern of proteins observed in the immunoblot experiments. Finally, the binding of human LDL to the intact tegument was measured by microcalorimetry. Binding was shown to be an exothermic reaction, releasing approximately 2500 kcal/mol, it was saturable, and reproducibly displayed a biphasic curve suggesting that binding of LDL to S. mansoni might occur through a two step process, initiated by a nonspecific hydrophobic interaction followed by a specific high affinity ligand-receptor reaction. Pre-treatment of the tegument with trypsin reduced the binding of LDL to the tegument. Furthermore, albumin, which is an abundant lipid carrier protein in the serum and thus a potential ligand, failed to release any measurable heat when incubated with the tegument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号