首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bronchial glands, which consist of mucous and serous cells, are abundant in human airways, playing a major role in the airway secretion. Cl(-) secretion is accompanied by water transport to the lumen in the acinar cells of bronchial glands. Agonists that increase [Ca(2+)]i induce the Cl(-) secretion in bronchial glands. Ca(2+) release from a IP(3)-sensitive Ca(2+) pool at the apical portion stimulates and opens Ca(2+)-sensitive Cl(-) channels at the apical membrane, producing Cl(-) secretion in bronchial glands. K(+) channels at the basolateral membranes are Ca(2+)-sensitive and activated by Ca(2+) release from a cADPribose-sensitive Ca(2+) pool, maintaining the Cl(-) secretion in bronchial glands. Further, cADP ribose in concert with IP(3) induce [Ca(2+)]i oscillation, inducing Cl(-) secretion in bronchial glands. Some tyrosine kinases are involved in the Cl(-) secretion in bronchial glands. Mucous and serous cells in bronchial glands take part in mucin secretion and the secretion of defensive substances (glycoconjugates), respectively. [Ca(2+)]i oscillations are shown to play a central role in the exocytosis of secretory granules in serous cells of bronchial glands. Other signal transductions of mucin and glycoconjugates in airway gland cells remain to be studied, although agonists which increase [cAMP]i are also well known to induce mucin and glycoconjugate secretion from airway glands.  相似文献   

2.
Ca(2+) activated Cl(-) transport is found in airways and other organs and is abnormal in cystic fibrosis, polycystic kidney disease and infectious diarrhea. The molecular identity of Ca(2+) activated Cl(-) channels (CaCC) in the airways is still obscure. Bestrophin proteins were described to form CaCC and to regulate voltage gated Ca(2+) channels. The present Ussing chamber recordings on tracheas of bestrophin 1 knockout (vmd2(-/-)) mice indicate a reduced Cl(-) secretion when activated by the purinergic agonist ATP (0.1-1 muM). As two paralogs, best1 and best2, are present in mouse tracheal epithelium, we examined the contribution of each paralog to Ca(2+) activated Cl(-) secretion. In whole cell patch-clamp measurements on primary airway epithelial cells from vmd2(-/-) tracheas, ATP activated Cl(-) currents were reduced by 50%. Additional knockdown of mbest2 in vmd2(-/-) cells by short interfering RNA further suppressed ATP-induced Cl(-) currents down to 20% of that observed in cells from vmd2(+/+) animals. Moreover, RNAi-suppression of both mbest1 and mbest2 reduced CaCC in vmd2(+/+) cells. Direct activation of CaCC by increase of intracellular Ca(2+) was also reduced in whole cell recordings of vmd2(-/-) cells. These results clearly suggest a role of bestrophin 1 and 2 for Ca(2+) dependent Cl(-) secretion in mouse airways.  相似文献   

3.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+) signal to activate Ca(2+)-dependent Cl(-) channels. Cytosolic [Ca(2+)](i) was measured in non-polarized human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Primary human CF and non-CF airway epithelial monolayers as well as Calu-3 monolayers were used to assess anion secretion. In vivo nasal potential difference measurements were performed in non-CF and two different CF mouse (DeltaF508 homozygous and bitransgenic gut-corrected but lung-null) models. Zinc and ATP induced a sustained, reversible, and reproducible increase in cytosolic Ca(2+) in CF and non-CF cells with chemistry and pharmacology most consistent with activation of P2X purinergic receptor channels. P2X purinergic receptor channel-mediated Ca(2+) entry stimulated sustained Cl(-) and HCO(3)(-) secretion in CF and non-CF epithelial monolayers. In non-CF mice, zinc and ATP induced a significant Cl(-) secretory response similar to the effects of agonists that increase intracellular cAMP levels. More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.  相似文献   

4.
Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.  相似文献   

5.
Calcium-activated Cl(-) secretion is an important modulator of regulated ion transport in murine airway epithelium and is mediated by an unidentified Ca(2+)-stimulated Cl(-) channel. We have transfected immortalized murine tracheal epithelial cells with the cDNA encoding the permeabilizing P2X(7) purinoreceptor (P2X(7)-R) to selectively permeabilize the basolateral membrane and thereby isolate the apical membrane Ca(2+)-activated Cl(-) current. In P2X(7)-R-permeabilized cells, we have demonstrated that UTP stimulates a Cl(-) current across the apical membrane of CF and normal murine tracheal epithelial cells. The magnitude of the UTP-stimulated current was significantly greater in CF than in normal cells. Ion substitution studies demonstrated that the current exhibited a permselectivity sequence of Cl(-) > I(-) > Br(-) > gluconate(-). We have also determined a rank order of potency for putative Cl(-) channel blockers: niflumic acid > or = 5-nitro-2-(3-phenylpropylamino)benzoic acid > 4, 4'-diisothiocyanostilbene-2,2'-disulfonate > glybenclamide > diphenlyamine-2-carboxylate, tamoxifen, and p-tetra-sulfonato-tetra-methoxy-calix[4]arene. Complete characterization of this current and the corresponding single channel properties could lead to the development of a new therapy to correct the defective airway surface liquid in cystic fibrosis patients.  相似文献   

6.
Acrolein administered to isolated airways has been shown to alter airway responsiveness as a consequence of its effect on Ca(2+) signaling. To examine the mechanisms involved, we studied the effect of acrolein on ACh- and caffeine-induced membrane currents (patch-clamp) in myocytes freshly isolated from rat trachea. In cells clamped at -60 mV, ACh (0.1-10 microM) induced a concentration-dependent inward current, which, in approximately 50% of the cells, was followed by current oscillations in response to high concentration of ACh (10 microM). Exposure to acrolein (0.2 microM) for 10 min significantly enhanced the amplitude of the low-ACh (0.1 microM) concentration-induced initial peak of current (318.8 +/- 28.3 vs. 251.2 +/- 40.3 pA; n = 25, P < 0.05). At a high-ACh concentration (10 microM), the frequency at which subsequent peaks occurred was significantly increased (13.2 +/- 1.1 vs. 8.7 +/- 2 min(-1); n = 20, P < 0.05). ACh-induced current was identified as a Ca(2+)-activated Cl(-) current. In contrast, similar exposure to acrolein, which does not alter caffeine-induced Ca(2+) release, did not alter caffeine-induced transient membrane currents (595 +/- 45 and 640 +/- 45 pA in control cells and in cells exposed to acrolein, respectively; n = 15). It is concluded that acrolein alters ACh-induced current as a consequence of its effect on the cytosolic Ca(2+) concentration response and that the protective role of inhibitors of Cl(-) channels in air pollutant-induced airway hyperresponsiveness should be examined.  相似文献   

7.
Intracellular Ca(2+) is actively sequestered into the sarcoplasmic reticulum (SR), whereas the release of Ca(2+) from the SR can be triggered by activation of the inositol 1,4,5-trisphosphate and ryanodine receptors. Uptake and release of Ca(2+) across the SR membrane are electrogenic processes; accumulation of positive or negative charge across the SR membrane could electrostatically hinder the movement of Ca(2+) into or out of the SR, respectively. We hypothesized that the movement of intracellular Cl(-) (Cl(i)(-)) across the SR membrane neutralizes the accumulation of charge that accompanies uptake and release of Ca(2+). Thus inhibition of SR Cl(-) fluxes will reduce Ca(2+) sequestration and agonist-induced release. The Cl(-) channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10(-4) M), previously shown to inhibit SR Cl(-) channels, significantly reduced the magnitude of successive acetylcholine-induced contractions of airway smooth muscle (ASM), suggesting a "run down" of sequestered Ca(2+) within the SR. Niflumic acid (10(-4) M), a structurally different Cl(-) channel blocker, had no such effect. Furthermore, NPPB significantly reduced caffeine-induced contraction and increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). Depletion of Cl(i)(-), accomplished by bathing ASM strips in Cl(-)-free buffer, significantly reduced the magnitude of successive acetylcholine-induced contractions. In addition, Cl(-) depletion significantly reduced caffeine-induced increases in [Ca(2+)](i). Together these data suggest a novel role for Cl(i)(-) fluxes in Ca(2+) handling in smooth muscle. Because the release of sequestered Ca(2+) is the predominate source of Ca(2+) for contraction of ASM, targeting Cl(i)(-) fluxes may prove useful in the control of ASM hyperresponsiveness associated with asthma.  相似文献   

8.
Platelet-activating factor (PAF) is a phospholipid inter- and intracellular mediator implicated in intestinal injury primarily via induction of an inflammatory cascade. We find that PAF also has direct pathological effects on intestinal epithelial cells (IEC). PAF induces Cl(-) channel activation, which is associated with intracellular acidosis and apoptosis. Using the rat small IEC line IEC-6, electrophysiological experiments demonstrated that PAF induces Cl(-) channel activation. This PAF-activated Cl(-) current was inhibited by Ca(2+) chelation and a calcium calmodulin kinase II inhibitor, suggesting PAF activation of a Ca(2+)-activated Cl(-) channel. To determine the pathological consequences of Cl(-) channel activation, microfluorimetry experiments were performed, which revealed PAF-induced intracellular acidosis, which is also inhibited by the Cl(-) channel inhibitor 4,4'diisothiocyanostilbene-2,2'disulfonic acid and Ca(2+) chelation. PAF-induced intracellular acidosis is associated with caspase 3 activation and DNA fragmentation. PAF-induced caspase activation was abolished in cells transfected with a pH compensatory Na/H exchanger construct to enhance H(+) extruding ability and prevent intracellular acidosis. As ClC-3 is a known intestinal Cl(-) channel dependent on both Ca(2+) and calcium calmodulin kinase II phosphorylation, we generated ClC-3 knockdown cells using short hairpin RNA. PAF induced Cl(-) current; acidosis and apoptosis were all significantly decreased in ClC-3 knockdown cells. Our data suggest a novel mechanism of PAF-induced injury by which PAF induces intracellular acidosis via activation of the Ca(2+)-dependent Cl(-) channel ClC-3, resulting in apoptosis of IEC.  相似文献   

9.
The effects of CLCA protein expression on the regulation of Cl(-) conductance by intracellular Ca(2+) and cAMP have been studied previously in nonepithelial cell lines chosen for low backgrounds of endogenous Cl(-) conductance. However, CLCA proteins have been cloned from, and normally function in, differentiated epithelial cells. In this study, we examine the effects of differentiation of the Caco-2 epithelial colon carcinoma cell line on modulation of Cl(-) conductance by pCLCA1 protein expression. Cl(-) transport was measured as (36)Cl(-) efflux, as transepithelial short-circuit currents, and as whole cell patch-clamp current-voltage relations. The rate of (36)Cl(-) efflux and amplitude of currents in patch-clamp studies after the addition of the Ca(2+) ionophore A-23187 were increased significantly by pCLCA1 expression in freshly passaged Caco-2 cells. However, neither endogenous nor pCLCA1-dependent Ca(2+)-sensitive Cl(-) conductance could be detected in 14-day-postpassage cells. In contrast to Ca(2+)-sensitive Cl(-) conductance, endogenous cAMP-dependent Cl(-) conductance does not disappear on Caco-2 differentiation. cAMP-dependent Cl(-) conductance was modulated by pCLCA1 expression in Caco-2 cells, and this modulation was observed in freshly passaged and in mature 14-day-postpassage Caco-2 cultures. pCLCA1 mRNA expression, antigenic pCLCA1 protein epitope expression, and pCLCA1 function as a modulator of cAMP-dependent Cl(-) conductance were retained through differentiation in Caco-2 cells, whereas Ca(2+)-dependent Cl(-) conductance disappeared. We conclude that pCLCA1 expression may increase the sensitivity of preexisting endogenous Cl(-) channels to Ca(2+) and cAMP agonists but apparently lacks inherent Cl(-) channel activity under growth conditions where endogenous channels are not expressed.  相似文献   

10.
Glibenclamide, an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 human hepatoblastoma cells. Glibenclamide increased intracellular Ca(2+) concentration, which was significantly inhibited by Ca(2+) release blockers dantrolene and TMB-8. BAPTA/AM, an intracellular Ca(2+) chelator, and the Ca(2+) release blockers significantly inhibited glibenclamide-induced apoptosis. Glibanclamide also increased intracellular Cl(-) concentration, which was significantly blocked by CFTR Cl(-) channel activators levamisole and bromotetramisole. These activators also significantly inhibited both intracellular Ca(2+) release and apoptosis induced by glibenclamide. The expression of CFTR protein in the cells was confirmed by Western blot analysis. These results suggest that glibenclamide induced apoptosis through inhibition of CFTR Cl(-) channels and intracellular Ca(2+) release and that this protein may be a good target for treatment of human hepatomas.  相似文献   

11.
Elevation of extracellular Ca(2+) concentration induces intracellular Ca(2+) signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+) pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+) concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+) signaling in frog parathyroid cells and show that Ca(2+)-activated Cl(-) channels are activated by intracellular Ca(2+) increase through an inositol 1,4,5-trisphophate (IP(3))-independent pathway. High extracellular Ca(2+) induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50) ~6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+)-induced and Ca(2+) dialysis-induced currents reversed at the equilibrium potential of Cl(-) and were inhibited by niflumic acid (a specific blocker of Ca(2+)-activated Cl(-) channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+)-induced current, suggesting the change of intracellular Cl(-) concentration in a few minutes. Extracellular Ca(2+)-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca(2+)-induced current. IP(3) dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca(2+)-induced conductance. These results indicate that high extracellular Ca(2+) raises intracellular Ca(2+) concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(-) conductance.  相似文献   

12.
Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca(2+)-activated Cl(-) currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca(2+)-activated Cl(-) channel as well as a regulator of Ca(2+) signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl(-) channels by controlling intracellular Ca(2+) levels. Best1 interacts with important Ca(2+)-signaling proteins such as STIM1 and can interact directly with other Ca(2+)-activated Cl(-) channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca(2+)-activated Cl(-) channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca(2+)-dependent Cl(-) channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca(2+)-activated Cl(-) currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.  相似文献   

13.
Polarized Ca(2+) signals that originate at and spread from the apical pole have been shown to occur in acinar cells from lacrimal, parotid, and pancreatic glands. However, "local" Ca(2+) signals, that are restricted to the apical pole of the cell, have been previously demonstrated only in pancreatic acinar cells in which the primary function of the Ca(2+) signal is to regulate exocytosis. We show that submandibular acinar cells, in which the primary function of the Ca(2+) signal is to drive fluid and electrolyte secretion, are capable of both Ca(2+) waves and local Ca(2+) signals. The generally accepted model for fluid and electrolyte secretion requires simultaneous Ca(2+)-activation of basally located K(+) channels and apically located Cl(-) channels. Whereas a propagated cell-wide Ca(2+) signal is clearly consistent with this model, a local Ca(2+) signal is not, because there is no increase in intracellular Ca(2+) concentration at the basal pole of the cell. Our data provide the first direct demonstration, in submandibular acinar cells, of the apical and basal location of the Cl(-) and K(+) channels, respectively, and confirm that local Ca(2+) signals do not Ca(2+)-activate K(+) channels. We reevaluate the model for fluid and electrolyte secretion and demonstrate that Ca(2+)-activation of the Cl(-) channels is sufficient to voltage-activate the K(+) channels and thus demonstrate that local Ca(2+) signals are sufficient to support fluid secretion.  相似文献   

14.
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca(2+) activate the epithelial CaCCs, which provides an alternative Cl(-) secretory pathway in CF. We developed a screening assay and screened a library for compounds that could enhance cytoplasmic Ca2+, activate the CaCC, and increase Cl(-) secretion. We found that spiperone, a known antipsychotic drug, is a potent intracellular Ca2+ enhancer and demonstrated that it stimulates intracellular Ca2+, not by acting in its well-known role as an antagonist of serotonin 5-HT2 or dopamine D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Spiperone activates CaCCs, which stimulates Cl(-) secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro and in CFTR-knockout mice in vivo. In conclusion, we have identified spiperone as a new therapeutic platform for correction of defective Cl(-) secretion in CF via a pathway independent of CFTR.  相似文献   

15.
Increasing evidence suggests that P2 receptors (P2Rs) in airway epithelial cells perform critical functions in auto- or paracrine regulation of fluid and mucus secretion. In the present study, we characterized the effects of P2R stimulation on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in normal human nasal epithelial (NHNE) cells. [Ca(2+)](i) and pH(i) were measured in primary cultures of NHNE cells using a double perfusion chamber, which enabled us to analyze membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to Na(+)-dependent and bumetanide-sensitive intracellular uptake of NH(4)(+). NKCC activities were observed in the basolateral membrane, but not in the luminal membrane, of NHNE cells. Interestingly, P2Rs were expressed in both membranes, and the stimulation of either luminal or basolateral P2R increased NKCC activity. Blockades of luminal Cl(-) channels, basolateral K(+) channels, or protein kinase C did not affect the activation of NKCC by basolateral P2R stimulation. The effects of luminal P2R stimulation were partially reduced by Cl(-) channel blockers. However, chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) treatment completely blocked the stimulatory effects of luminal and basolateral P2Rs on NKCC. In addition, increasing [Ca(2+)](i) by treatment with ionomycin-stimulated NKCC activity. These results provide evidence that stimulation of P2Rs directly activates basolateral NKCC by Ca(2+)-dependent pathways in NHNE cells, which is an important aspect of the purinergic regulation of ion and fluid secretions in human airway epithelia under physiologic and pathologic conditions.  相似文献   

16.
SLC26 proteins function as anion exchangers and Cl(-) channels. SLC26A9 has been proposed to be a constitutively active and CFTR-regulated anion conductance in human bronchial epithelia. This positive interaction between two Cl(-) channels has been questioned by others and evidence has been provided that CFTR rather inhibits the transport activity of SLC26A9. We therefore examined the functional interaction between CFTR and SLC26A9 in polarized airway epithelial cells and in non-polarized HEK293 cells expressing CFTR and SLC26A9. We found that SLC26A9 provides a constitutively active basal Cl(-) conductance in polarized grown CFTR-expressing CFBE airway epithelial cells, but not in cells expressing F508del-CFTR. In polarized CFTR-expressing cells, SLC26A9 also contributes to both Ca(2+) - and CFTR-activated Cl(-) secretion. In contrast in non-polarized HEK293 cells co-expressing CFTR/SLC26A9, the baseline Cl(-) conductance provided by SLC26A9 was inhibited during activation of CFTR. SLC26A9 and CFTR behave differentially in polarized and non-polarized cells, which may explain earlier conflicting data.  相似文献   

17.
The objective of this study is to test the hypothesis that morphologically different mitochondria-rich (MR) cells may be responsible for the uptake of different ions in freshwater-adapted fish. Tilapia (Oreochromis mossambicus) were acclimated to high-Ca, mid-Ca, low-Ca, and low-NaCl artificial freshwater, respectively, for 2 wk. Cell densities of wavy-convex, shallow-basin, and deep-hole types of gill MR cells as well as whole-body Ca(2+), Na(+), and Cl(-) influxes were measured. Low-Ca fish developed more shallow-basin MR cells in the gills and a higher Ca(2+) influx than those acclimated to other media. However, fish acclimated to low-NaCl artificial freshwater predominantly developed wavy-convex cells, and this was accompanied by the highest Na(+) and Cl(-) influxes. Relative abundance of shallow-basin and wavy-convex MR cells appear to be associated with changes in Ca(2+) and Na(+)/Cl(-) influxes, suggesting that shallow-basin and wavy-convex MR cells are mainly responsible for the uptake of Ca(2+) and Na(+)/Cl(-), respectively.  相似文献   

18.
Ca(2+) sparks are highly localized, transient releases of Ca(2+) from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca(2+) sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca(2+)-activated K(+) channels, and also gate Ca(2+)-activated Cl(-) (Cl((Ca))) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca(2+) sparks is well understood, little information is available on how Ca(2+) sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl((Ca)) channels in spark sites in airway myocytes from mouse. Ca(2+) sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca(2+) current underlying a Ca(2+) spark (I(Ca(spark))), with an appropriate correction for endogenous fixed Ca(2+) buffer, which was characterized by flash photolysis of NPEGTA. We found that I(Ca(spark)) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca(2+) sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the I(Ca(spark)) by less than 3 ms, and its rising phase matches the duration of the I(Ca(spark)). We further determined that Cl((Ca)) channels on average are exposed to a [Ca(2+)] of 2.4 microM or greater during Ca(2+) sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca(2+)] produced by a reaction-diffusion simulation with measured I(Ca(spark)). Finally we estimated that the number of Cl((Ca)) channels localized in Ca(2+) spark sites could account for all the Cl((Ca)) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl((Ca)) channels in Ca(2+) spark sites localize near to each other, and, moreover, Cl((Ca)) channels concentrate in an area with a radius of approximately 600 nm, where their density reaches as high as 300 channels/microm(2). This model reveals that Cl((Ca)) channels are tightly controlled by Ca(2+) sparks via local Ca(2+) signaling.  相似文献   

19.
The odorant-induced Ca(2+) increase inside the cilia of vertebrate olfactory sensory neurons controls both excitation and adaptation. The increase in the internal concentration of Ca(2+) in the cilia has recently been visualized directly and has been attributed to Ca(2+) entry through cAMP-gated channels. These recent results have made it possible to further characterize Ca(2+)'s activities in olfactory neurons. Ca(2+) exerts its excitatory role by directly activating Cl(-) channels. Given the unusually high concentration of ciliary Cl(-), Ca(2+)'s activation of Cl(-) channels causes an efflux of Cl(-) from the cilia, contributing high-gain and low-noise amplification to the olfactory neuron depolarization. Moreover, in combination with calmodulin, Ca(2+) mediates odorant adaptation by desensitizing cAMP-gated channels. The restoration of the Ca(2+) concentration to basal levels occurs via a Na(+)/Ca(2+) exchanger, which extrudes Ca(2+) from the olfactory cilia.  相似文献   

20.
Sustained rise in cytosolic Ca(2+) and cell shrinkage mainly caused by K(+) and Cl(-) efflux are known to be prerequisites to apoptotic cell death. Here, we investigated how the efflux of K(+) and Cl(-) as well as the rise in cytosolic Ca(2+) occur prior to caspase activation and are coupled to each other in apoptotic human epithelial HeLa cells. Caspase-3 activation and DNA laddering induced by staurosporine were abolished by blockers of K(+) and Cl(-) channels or cytosolic Ca(2+) chelation. Staurosporine induced decreases in the intracellular free K(+) and Cl(-) concentrations ([K(+)](i) and [Cl(-)](i)) in an early stage prior to caspase-3 activation. Staurosporine also induced a long-lasting rise in the cytosolic free Ca(2+) concentration. The early-phase decreases in [K(+)](i) and [Cl(-)](i) were completely prevented by a blocker of K(+) or Cl(-) channel, but were not affected by cytosolic Ca(2+) chelation. By contrast, the Ca(2+) response was abolished by a blocker of K(+) or Cl(-) channel. Strong hypertonic stress promptly induced a cytosolic Ca(2+) increase lasting >50 min together with sustained shrinkage and thereafter caspase-3 activation after 4 h. The hypertonic stress induced slight increases in [K(+)](i) and [Cl(-)](i) in the first 50 min, but these increases were much less than the effect of shrinkage-induced condensation, indicating that K(+) and Cl(-) efflux took place. Hypertonicity induced caspase-3 activation that was prevented not only by cytosolic Ca(2+) chelation but also by K(+) and Cl(-) channel blockers. Thus, it is concluded that not only Ca(2+) mobilization but early-phase efflux of K(+) and Cl(-) are required for caspase activation, and Ca(2+) mobilization is a downstream and resultant event of cell shrinkage in both staurosporine- and hypertonicity-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号