首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of calf thymus DNA with nevirapine at physiological pH was studied by using absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, salt effect studies and computational methods. The drug binds to ct-DNA in a groove binding mode, as shown by slight variation in the viscosity of ct-DNA. Furthermore, competitive fluorimetric studies with Hoechst 33258 indicate that nevirapine binds to DNA via groove binding. Moreover, the structure of nevirapine was optimized by DFT calculations and was used for the molecular docking calculations. The molecular docking results suggested that nevirapine prefers to bind on the minor groove of ct-DNA.  相似文献   

2.
Abstract

This study was designed to examine interaction of two ternary copper (II) Schiff base complexes with bovine serum albumin (BSA), using spectroscopic and molecular docking techniques. The fluorescence quenching measurements revealed that the quenching mechanism was static and the binding site of both Schiff bases to BSA was singular. Förster energy transfer measurements, synchronous fluorescence spectroscopy, and docking study showed both Schiff bases bind to the Trp residues of BSA in short distances. Docking study showed that both Schiff base molecules bind with BSA by forming several hydrogen and van der Waals bonds. In addition, molecular docking study indicated that Schiff base A and Schiff base B were located within the binding pocket of subdomain IB and subdomain IIA of BSA, respectively. Results of Fourier transform-infrared spectroscopy demonstrated that bovine serum albumin interacts with both Schiff bases and the secondary structure of BSA was changed.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
Abstract

In this paper, we have studied the in vitro binding of neotame (NTM), an artificial sweetener, with native calf thymus DNA using different methods including spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD), and viscosimetric techniques. From the spectrophotometric studies, the binding constant (Kb) of NTM-DNA was calculated to be 2?×?103 M?1. The quenching of the intrinsic fluorescence of NTM in the presence of DNA at different temperatures was also used to calculate binding constants (Kb) as well as corresponding number of binding sites (n). Moreover, the obtained results indicated that the quenching mechanism involves static quenching. By comparing the competitive fluorimetric studies with Hoechst 33258, as a known groove probe, and methylene blue, as a known intercalation probe, and iodide quenching experiments it was revealed that NTM strongly binds in the grooves of the DNA helix, which was further confirmed by CD and viscosimetric studies. In addition, a molecular docking method was employed to further investigate the binding interactions between NTM and DNA, and confirm the obtained results.  相似文献   

4.
Spectroscopic studies of interaction of chlorobenzylidine with DNA   总被引:5,自引:0,他引:5  
Zhong W  Yu JS  Huang W  Ni K  Liang Y 《Biopolymers》2001,62(6):315-323
Electronic absorbance and fluorescence titrations are used to probe the interaction of chlorobenzylidine with DNA. The binding of chlorobenzylidine to DNA results in hypochromism, a small shift to a longer wavelength in the absorption spectra, and emission quenching in the fluorescence spectra. These spectral characteristics suggest that chlorobenzylidine binds to DNA by an intercalative mode. This conclusion is reinforced by fluorescence polarization measurements. Scatchard plots constructed from fluorescence titration data give a binding constant of 1.3 x 10(5) M(-1) and a binding site size of 10 base pairs. This indicates that chlorobenzylidine has a high affinity with DNA. The intercalative interaction is exothermic with a Van't Hoff enthalpy of -143 kJ/mol. This result is obtained from the temperature dependence of the binding constant. The interaction of chlorobenzylidine with DNA is affected by the pH value of the solution. The binding constant has its maximum at pH 3.0. Upon binding to DNA, the fluorescence from chlorobenzylidine is quenched efficiently by the DNA bases and the fluorescence intensity tends to be constant at high concentrations of DNA when the binding is saturated. The Stern-Volmer quenching constant obtained from the linear quenching plot is 1.6 x 10(4) M(-1) at 25 degrees C. The measurements of the fluorescence lifetime and the dependence of the quenching constant on the temperature indicate that the fluorescence quenching process is static. The fluorescence lifetime of chlorobenzylidine is 1.9 +/- 0.4 ns.  相似文献   

5.
The interaction of dothiepin (DOT) and doxepin (DOX) with bovine serum albumin (BSA) and a DNA base (adenine) was studied using UV–visible, fluorescence, attenuated total reflection–infra‐red (ATR‐IR), cyclic voltammetry and molecular docking methods. Strong fluorescence quenching was observed upon interaction of DOT and DOX with BSA/adenine and the mechanism suggested static quenching. Hydrophobic and hydrogen bonding interactions were the predominant intermolecular forces needed to stabilize the copolymer. Upon addition of the drugs: (i) the tautomeric equilibrium structure of the adenine was changed; and (ii) the oxidation and the reduction peaks of the adenine/BSA interaction shifted towards high and low potentials, respectively. In ATR‐IR, the band shift of amides I and II indicated a change in secondary structure of BSA upon binding to DOT and DOX drugs. The reduction in voltammetric current in the presence of BSA/adenine was attributed to slow diffusion of BSA/adenine binding with DOX/DOT. The docking method indicated that the drug moiety interacted with the BSA molecule. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction between N‐acetyl cysteine (NAC) and bovine serum albumin (BSA) was investigated by UV–vis, fluorescence spectroscopy, and molecular docking methods. Fluorescence study at three different temperatures indicated that the fluorescence intensity of BSA was reduced upon the addition of NAC by the static quenching mechanism. Binding constant (Kb) and the number of binding sites (n) were determined. The binding constant for the interaction of NAC and BSA was in the order of 103 M?1, and the number of binding sites was obtained to be equal to 1. Enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) as thermodynamic values were also achieved by van't Hoff equation. Hydrogen bonding and van der Waals force were the major intermolecular forces in the interaction process and it was spontaneous. Finally, the binding mode and the binding sites were clarified using molecular docking which were in good agreement with the results of spectroscopy experiments. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 638–645, 2015.  相似文献   

7.
The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M?1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.  相似文献   

8.
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol.  相似文献   

9.
Acid yellow 23 (AY23) is a pervasive azo dye used in many fields which is potentially harmful to the environment and human health. This paper studied the toxic effects of AY23 on trypsin by spectroscopic and molecular docking methods. The addition of AY23 effectively quenched the intrinsic fluorescence of trypsin via static quenching with association constants of K290,K = 3.67 × 105 L mol?1 and K310,K = 1.83 × 105 L mol?1. The calculated thermodynamic parameters conformed that AY23 binds to trypsin predominantly via electrostatic forces with one binding site. Conformational investigations indicated the skeletal structure of trypsin unfolded and the microenvironment of tryptophan changed with the addition of AY23. Molecular docking study showed that AY23 interacted with the His 57 and Lys 224 residue of trypsin and led to the inhibition of enzyme activity. This study offers a more comprehensive picture of AY23–trypsin interaction and indicates their interaction may perform toxic effects within the organism. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:360–367, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21430  相似文献   

10.
11.
Recent studies have demonstrated that caffeine can act as an antimutagen and inhibit the cytoxic and/or cytostatic effects of some DNA intercalating agents. It has been suggested that this inhibitory effect may be due to complexation of the DNA intercalator with caffeine. In this study we employ optical absorption, fluorescence, and molecular modeling techniques to probe specific interactions between caffeine and various DNA intercalators. Optical absorption and steady-state fluorescence data demonstrate complexation between caffeine and the planar DNA intercalator acridine orange. The association constant of this complex is determined to be 258.4 +/- 5.1 M-1. In contrast, solutions containing caffeine and the nonplanar DNA intercalator ethidium bromide show optical shifts and steady-state fluorescence spectra indicative of a weaker complex with an association constant of 84.5 +/- 3.5 M-1. Time-resolved fluorescence data indicate that complex formation between caffeine and acridine orange or ethidium bromide results in singlet-state lifetime increases consistent with the observed increase in the steady-state fluorescence yield. In addition, dynamic polarization data indicate that these complexes form with a 1:1 stoichiometry. Molecular modeling studies are also included to examine structural factors that may influence complexation.  相似文献   

12.
Quercetin is a kind of flavonoid which has been proved to exhibit anti-tumor activity. The interaction modes of quercetins with monomeric and dimeric G-quadruplexes were studied by absorption, fluorescence, CD, and (1)H NMR spectroscopies. The ligands were found to be stacked with terminal tetrads of monomeric G-quadruplexes by intercalation and bound to dimeric G-quadruplexes by groove binding.  相似文献   

13.
The interaction between monomeric insulin and monosaccharides has been investigated through circular dichroism, fluorescence spectroscopy and two dimensional nuclear magnetic resonance. CD spectra indicate that D-glucose interacts with monomeric insulin whereas D-galactose, D-mannose and 2-deoxy-D-glucose have a lower effect. Fluorescence emission was quenched at sugar concentrations of 5-10 mM. Titration with the different sugars produces a quenching of the tyrosine spectrum from which a binding free energy value for the insulin-sugar complexes has been evaluated. Transfer nuclear Overhauser enhancement NMR experiments indicate the existence of dipolar interactions at short interatomic distances between C-1 proton of D-glucose in the beta form and the monomeric insulin. Further, NMR total correlation spectra experiments revealed that the hormone is in the monomeric form and that upon addition of glucose no aggregation occurs. The interaction does not involve relevant changes in the secondary structure of insulin suggesting that the interaction occur at the side chain level. Molecular dynamics simulations and modeling studies, based on the dynamic fluctuations of potential binding moiety sidechains, argued from results of NMR spectroscopy, provide additional informations to locate the putative binding sites of D-glucose to insulin.  相似文献   

14.
The interaction between paracetamol and human serum albumin (HSA) under physiological conditions has been investigated by fluorescence, circular dichroism (CD) and docking. Fluorescence data revealed that the fluorescence quenching of HSA by paracetamol was the result of the formed complex of HSA–paracetamol, and the binding constant (Ka) and binding number obtained is 1.3 × 104 at 298 K and 2, respectively for the primary binding site. Circular dichorism spectra showed the induced conformational changes in HSA by the binding of paracetamol. Moreover, protein–ligand docking study indicated that paracetamols (two paracetamols bind to HSA) bind to residues located in the subdomain IIIA.  相似文献   

15.
Abstract

In this work, we have synthesized a few novel mononuclear complexes of Cu(II), Co(II), Ni(II) and Zn(II) using a pyrazolone-derived Schiff base ligand. They were characterized by spectroscopic and analytical methods. The elemental analyses, UV-Vis, magnetic moment values and molar conductance of the complexes reveal that the complexes adopt an octahedral arrangement around the central metal ions. The interaction of complexes with CT-DNA was studied by absorption spectral titration and viscosity measurements. The observed data show that the complexes bind with CT-DNA via an intercalation mode. Efficient pUC18 DNA cleavage ability of the synthesized compounds was explored by gel electrophoresis. The antimicrobial activity of these compounds against a set of bacterial and fungal strains reveals that the complexes exhibit better activity than the free ligand. Moreover, all the complexes were evaluated against two cancer (HeLa and HepG2) and one normal (NHDF) cell lines. The data were compared with cisplatin. Anti–inflammatory activity has been experimentally validated which proves that theoretical predictions concur with the experimental results. In addition, molecular docking studies have been performed to consider the nature of binding mode and binding affinity of these compounds with DNA (1BNA) and protein (3hb5). These studies reveal that the mode of binding is intercalation and the complexes have higher binding energy scores than the free ligand.  相似文献   

16.
We used UV-vis absorption spectroscopy, fluorescence spectrophotometry and molecular docking calculations to investigate intermolecular interaction between the cationic dye, Nile blue (NB), and synthetic polynucleotides, poly(A-T), poly(G-C) and calf thymus DNA (Ct-DNA) at physiological pH. Strong hypsochromic absorbance and fluorescence quenching were observed that showed strong binding of NB to these polynucleotides and DNA. The binding affinity values derived from maximum absorption of the spectra of NB bound to various polynucleotides and Ct-DNA concentrations suggests that NB exhibits greater binding affinity to poly(G-C) than to poly(A-T). The thermodynamic parameters suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of NB to DNA. The molecular docking results suggested that NB was an intercalator of the stacked base pairs of Ct-DNA.  相似文献   

17.
The interaction of triazole substituted 4‐methyl‐7‐hydroxycoumarin derivatives (CUM1‐4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet‐visible (UV‐Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol?1. CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.  相似文献   

18.
The effect of phosphate on the binuclear iron center of pink (reduced) uteroferrin was examined by magnetic resonance and optical spectroscopy. The purple (oxidized) protein, which contains 1 mol of tightly bound phosphate per mol of enzyme at isolation, does not give rise to a 31P NMR signal. Phosphate binding to phosphate-stripped pink uteroferrin is indistinguishable from that in the native purple phosphoprotein. As measured by EPR and optical spectroscopy, the rate of reaction between phosphate and pink uteroferrin is pH-dependent, decreasing as the pH increases. Phosphate is capable of binding to the reduced protein between pH 3 and 7.8, resulting in formation of the purple uteroferrin-phosphate complex. Evans susceptibility measurements at pH 4.9 indicate that the EPR silent species with a maximum absorption at 535 nm, generated upon phosphate addition to pink uteroferrin, is diamagnetic. Moreover, phosphate causes disappearance of the hyperfine-shifted resonances in the 1H NMR spectra of the reduced protein. We therefore have not been able to identify the paramagnetic "purple reduced enzyme-phosphate complex" reported by Pyrz et al. (Pyrz, J. W., Sage, J. T., Debrunner, P. G., and Que, Jr., L. (1986) J. Biol Chem. 261, 11015-11020) using Mossbauer spectroscopy and dithionite-reduced 57Fe-reconstituted uteroferrin. Our present data with native unmodified enzyme are in accord with our earlier results (Antanaitis, B. C., and Aisen, P. (1985) J. Biol. Chem. 260, 751-756) and with the results of Burman et al. (Burman, S., Davis, J. C., Weber, M. J., and Averill, B. A. (1986) Biochem. Biophys. Res. Commun. 136, 490-497) on bovine spleen phosphatase, suggesting that phosphate binding to reduced protein rapidly induces oxidation of the binuclear iron center.  相似文献   

19.
The interaction of native calf thymus DNA (CT-DNA) with quercetin-terbium(III) [Q-Tb(III)] complex at physiological pH was monitored by UV absorption spectrophotometry, circular dichroism, fluorescence spectroscopy, and viscosimetric techniques. The complex displays binding properties to the CT-DNA and was found to interact with CT-DNA through outside binding, demonstrated by a hypochromic effect of Q-Tb(III) on the UV spectra of CT-DNA and the calculated association constants (K). Also, decrease in the specific viscosity of CT-DNA, decrease in the fluorescence intensity of Q-Tb(III) solutions in the presence of increasing amounts of CT-DNA, and detectable changes in the circular dichroism spectrum of CT-DNA are other evidences to indicate that Q-Tb(III) complex interact with CT-DNA through outside binding.  相似文献   

20.
Interactions between the polyamidoamine (PAMAM) dendrimer and drug molecules are of interest for their potential biomedical applications. The goal of this work is to examine the interaction of PAMAM‐C12 25% dendrimer with morin. The ultraviolet–visible, fluorescence spectroscopic methods as well as molecular modeling were used to analyze drug‐binding mode, binding constants and binding sites, etc. The experimental data showed that the binding constant of morin‐PAMAM‐C12 25% is about 105 L/mol. The interaction of morin with PAMAM‐C12 25% is mainly driven by the hydrophobic, electrostatic, hydrogen bonds and van der Waals forces. There are mainly three classes of binding site of morin at the interface of PAMAM‐C12 25%. These results provided some useful information for self‐assembling and disassembling the PAMAM dendrimer as well as efficient drug delivery and therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号