首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased glutamatergic input, particularly N-methyl-D-aspartate receptor (NMDAR) activity, in the paraventricular nucleus (PVN) of the hypothalamus is closely associated with high sympathetic outflow in essential hypertension. The molecular mechanisms underlying augmented NMDAR activity in hypertension are unclear. GluN2 subunit composition at the synaptic site critically determines NMDAR functional properties. Here, we found that evoked NMDAR-excitatory postsynaptic currents (EPSCs) of retrogradely labeled spinally projecting PVN neurons displayed a larger amplitude and shorter decay time in spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rats. Blocking GluN2B caused a smaller decrease in NMDAR-EPSCs of PVN neurons in SHRs than in WKY rats. In contrast, GluN2A blockade resulted in a larger reduction in evoked NMDAR-EPSCs and puff NMDA-elicited currents of PVN neurons in SHRs than in WKY rats. Blocking presynaptic GluN2A, but not GluN2B, significantly reduced the frequency of miniature EPSCs and the firing activity of PVN neurons in SHRs. The mRNA and total protein levels of GluN2A and GluN2B in the PVN were greater in SHRs than in WKY rats. Furthermore, the GluN2B Ser(1480) phosphorylation level and the synaptosomal GluN2A protein level in the PVN were significantly higher in SHRs than in WKY rats. Inhibition of protein kinase CK2 normalized the GluN2B Ser(1480) phosphorylation level and the contribution of GluN2A to NMDAR-EPSCs and miniature EPSCs of PVN neurons in SHRs. Collectively, our findings suggest that CK2-mediated GluN2B phosphorylation contributes to increased synaptic GluN2A, which potentiates pre- and postsynaptic NMDAR activity and the excitability of PVN presympathetic neurons in hypertension.  相似文献   

2.
Trafficking of NMDA receptors to the surface of neurons and to synapses is critical for proper brain function and activity-dependent plasticity. Recent evidence suggests that surface trafficking of other ionotropic glutamate receptors requires ligand binding for exit from the endoplasmic reticulum. Here, we show that glutamate binding to GluN2 is required for trafficking of NMDA receptors to the cell surface. We expressed a panel of GluN2B ligand binding mutants in heterologous cells with GluN1 or in rat cultured neurons and found that surface expression correlates with glutamate efficacy. Such a correlation was found even in the presence of dominant negative dynamin to inhibit endocytosis and surface expression correlated with Golgi localization, indicating differences in forward trafficking. Co-expression of wild type GluN2B did not enhance surface expression of the mutants, suggesting that glutamate must bind to both GluN2 subunits in a tetramer and that surface expression is limited by the least avid of the two glutamate binding sites. Surface trafficking of a constitutively closed cleft GluN2B was indistinguishable from that of wild type, suggesting that glutamate concentrations are typically not limiting for forward trafficking. YFP-GluN2B expressed in hippocampal neurons from GluN2B(-/-) mice rescued synaptic accumulation at similar levels to wild type. Under these conditions, surface synaptic accumulation of YFP-GluN2B mutants also correlated with apparent glutamate affinity. Altogether, these results indicate that glutamate controls forward trafficking of NMDA receptors to the cell surface and to synapses and raise the intriguing idea that NMDA receptors may be functional at intracellular sites.  相似文献   

3.
Emerging evidence suggests that metabotropic glutamate receptors (mGluRs) are potential novel targets for brain disorders associated with the dysfunction of prefrontal cortex (PFC), a region critical for cognitive and emotional processes. Because N-methyl-D-aspartic acid receptor (NMDAR) dysregulation has been strongly associated with the pathophysiology of mental illnesses, we examined the possibility that mGluRs might be involved in modulating PFC functions by targeting postsynaptic NMDARs. We found that application of prototypical group III mGluR agonists significantly reduced NMDAR-mediated synaptic and ionic currents in PFC pyramidal neurons, which was mediated by mGluR7 localized at postsynaptic neurons and involved the β-arrestin/ERK signaling pathway. The mGluR7 modulation of NMDAR currents was prevented by agents perturbing actin dynamics and by the inhibitor of cofilin, a major actin-depolymerizing factor. Consistently, biochemical and immunocytochemical results demonstrated that mGluR7 activation increased cofilin activity and F-actin depolymerization via an ERK-dependent mechanism. Furthermore, mGluR7 reduced the association of NMDARs with the scaffolding protein PSD-95 and the surface level of NMDARs in an actin-dependent manner. These data suggest that mGluR7, by affecting the cofilin/actin signaling, regulates NMDAR trafficking and function. Because ablation of mGluR7 leads to a variety of behavioral symptoms related to PFC dysfunction, such as impaired working memory and reduced anxiety and depression, our results provide a potential mechanism for understanding the role of mGluR7 in mental health and disorders.  相似文献   

4.
N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A–D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the α- and β-chains of the human major histocompatibility complex class II molecule. We created chimeras of α- and β-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A−/− neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes.  相似文献   

5.
N-methyl-D-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg(2+) block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that NMDAR-mediated signaling is dependent on specific NMDAR subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question is the role of subunit composition in observed NMDAR mechanosensitivity. Here, we used a recombinant system to assess the mechanosensitivity of specific subtypes and demonstrate that the mechanosensitive property is uniquely governed by the NR2B subunit. NR1/NR2B NMDARs displayed significant stretch sensitivity, whereas NR1/NR2A NMDARs did not respond to stretch. Furthermore, NR2B mechanosensitivity was regulated by PKC activity, because PKC inhibition reduced stretch responses in transfected HEK 293 cells and primary cortical neurons. Finally, using NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as a unique critical regulator of stretch sensitivity. These data suggest that the selective mechanosensitivity of NR2B can significantly impact neuronal response to traumatic brain injury and illustrate that the mechanical tone of the neuron can be dynamically regulated by PKC activity.  相似文献   

6.
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor are key regulators of synaptic plasticity underlying learning and memory. Direct binding of CaMKII to the NMDA receptor subunit GluN2B (formerly known as NR2B) (i) is induced by Ca2+/CaM but outlasts this initial Ca2+-stimulus, (ii) mediates CaMKII translocation to synapses, and (iii) regulates synaptic strength. CaMKII binds to GluN2B around S1303, the major CaMKII phosphorylation site on GluN2B. We show here that a phospho-mimetic S1303D mutation inhibited CaM-induced CaMKII binding to GluN2B in vitro, presenting a conundrum how binding can occur within cells, where high ATP concentration should promote S1303 phosphorylation. Surprisingly, addition of ATP actually enhanced the binding. Mutational analysis revealed that this positive net effect was caused by four modulatory effects of ATP, two positive (direct nucleotide binding and CaMKII T286 autophosphorylation) and two negative (GluN2B S1303 phosphorylation and CaMKII T305/6 autophosphorylation). Imaging showed positive regulation by nucleotide binding also within transfected HEK cells and neurons. In fact, nucleotide binding was a requirement for efficient CaMKII interaction with GluN2B in cells, while T286 autophosphorylation was not. Kinetic considerations support a model in which positive regulation by nucleotide binding and T286 autophosphorylation occurs faster than negative modulation by GluN2B S1303 and CaMKII T305/6 phosphorylation, allowing efficient CaMKII binding to GluN2B despite the inhibitory effects of the two slower reactions.  相似文献   

7.
AMPA receptors (AMPARs) are tetrameric ion channels that mediate rapid glutamate signaling in neurons and many non-neuronal cell types. Endoplasmic reticulum (ER) quality control mechanisms permit only correctly folded functional receptors to be delivered to the cell surface. We analyzed the biosynthetic maturation and transport of all 12 GluA1–4 subunit splice variants as homomeric receptors and observed robust isoform-dependent differences in ER exit competence and surface expression. In contrast to inefficient ER exit of both GluA3 splice forms and the flop variants of GluA1 and GluA4, prominent plasma membrane expression was observed for the other AMPAR isoforms. Surprisingly, deletion of the entire N-terminal domain did not alter the transport phenotype, nor did the different cytosolic C-terminal tail splice variants. Detailed analysis of mutant receptors led to the identification of distinct residues in the ligand-binding domain as primary determinants for isoform-specific maturation. Considered together with the essential role of bound agonist, our findings reveal the ligand-binding domain as the critical quality control target in AMPAR biogenesis.  相似文献   

8.
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.  相似文献   

9.
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors.  相似文献   

10.
The densin C-terminal domain can target Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) in cells. Although the C-terminal domain selectively binds CaMKIIα in vitro, full-length densin associates with CaMKIIα or CaMKIIβ in brain extracts and in transfected HEK293 cells. This interaction requires a second central CaMKII binding site, the densin-IN domain, and an "open" activated CaMKII conformation caused by Ca(2+)/calmodulin binding, autophosphorylation at Thr-286/287, or mutation of Thr-286/287 to Asp. Mutations in the densin-IN domain (L815E) or in the CaMKIIα/β catalytic domain (I205/206K) disrupt the interaction. The amino acid sequence of the densin-IN domain is similar to the CaMKII inhibitor protein, CaMKIIN, and a CaMKIIN peptide competitively blocks CaMKII binding to densin. CaMKII is inhibited by both CaMKIIN and the densin-IN domain, but the inhibition by densin is substrate-selective. Phosphorylation of a model peptide substrate, syntide-2, or of Ser-831 in AMPA receptor GluA1 subunits is fully inhibited by densin. However, CaMKII phosphorylation of Ser-1303 in NMDA receptor GluN2B subunits is not effectively inhibited by densin in vitro or in intact cells. Thus, densin can target multiple CaMKII isoforms to differentially modulate phosphorylation of physiologically relevant downstream targets.  相似文献   

11.
Multiple signaling pathways are involved in AMPAR trafficking to synapses during synaptic plasticity and learning. The mechanisms for how these pathways are coordinated in parallel but maintain their functional specificity involves subcellular compartmentalization of kinase function by scaffolding proteins, but how this is accomplished is not well understood. Here, we focused on characterizing the molecular machinery that functions in the sequential synaptic delivery of GluA1- and GluA4-containing AMPARs using an in vitro model of eyeblink classical conditioning. We show that conditioning induces the interaction of selective protein complexes with the key structural protein SAP97, which tightly regulates the synaptic delivery of GluA1 and GluA4 AMPAR subunits. The results demonstrate that in the early stages of conditioning the initial activation of PKA stimulates the formation of a SAP97-AKAP/PKA-GluA1 protein complex leading to synaptic delivery of GluA1-containing AMPARs through a SAP97-PSD95 interaction. This is followed shortly thereafter by generation of a SAP97-KSR1/PKC-GluA4 complex for GluA4 AMPAR subunit delivery again through a SAP97-PSD95 interaction. These data suggest that SAP97 forms the molecular backbone of a protein scaffold critical for delivery of AMPARs to the PSD during conditioning. Together, the findings reveal a cooperative interaction of multiple scaffolding proteins for appropriately timed delivery of subunit-specific AMPARs to synapses and support a sequential two-stage model of AMPAR synaptic delivery during classical conditioning.  相似文献   

12.
The A2A and A2B adenosine receptors (A2AR and A2BR) are implicated in many physiological processes. However, the mechanisms of their intracellular maturation and trafficking are poorly understood. In comparative studies of A2AR versus A2BR expression in transfected cells, we noticed that the levels of cell surface expression of A2BR were significantly lower than those of A2AR. A large portion of the A2BR was degraded by the proteasome. Studies of cell surface expression of A2BR chimeric molecules in transfectants suggested that A2BR does not have the dominant forward transport signal for export from the endoplasmic reticulum to the cell surface. A2BR surface expression was increased in A2BR chimeras where the A2BR carboxyl terminus (CT) was replaced or fused with the A2AR CT. Co-transfection of A2AR with A2BR enhanced surface expression of A2BR though the F(X)(6)LL motif in the A2AR CT. The requirements of A2AR expression for better A2BR cell surface expression was not only established in transfectants but also confirmed by observations of much lower levels of A2BR-induced intracellular cAMP accumulation in response to A2BR-activating ligand in splenocytes from A2AR(-/-) mice than in wild type mice. The results of mechanistic studies suggested that poor A2BR expression at the cell surface might be accounted for mainly by the lack of a dominant forward transport signal from the endoplasmic reticulum to the plasma membrane; it is likely that A2BR forms a hetero-oligomer complex for better function.  相似文献   

13.
N-Methyl-D-aspartate receptors (NMDARs), one of three main classes of ionotropic glutamate receptors, play major roles in synaptic plasticity, synaptogenesis, and excitotoxicity. Unlike non-NMDA receptors, NMDARs are thought to comprise obligatory heterotetrameric complexes mainly composed of GluN1 and GluN2 subunits. When expressed alone in heterogenous cells, such as HEK293 cells, most of the NMDAR subunits can neither leave the endoplasmic reticulum (ER) nor be expressed in the cell membrane because of the ER retention signals. Only when NMDARs are heteromerically assembled can the ER retention signals be masked and NMDARs be expressed in the surface membrane. However, the mechanisms underlying NMDAR assembly remain poorly understood. To identify regions in subunits that mediate this assembly, we made a series of truncated or chimeric cDNA constructs. Using FRET measurement in living cells combined with immunostaining and coimmunoprecipitation analysis, we examined the assembly-determining domains of NMDAR subunits. Our results indicate that the transmembrane region of subunits is necessary for the assembly of NMDAR subunits, both for the homodimer and the heteromer.  相似文献   

14.
Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.  相似文献   

15.
Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways.  相似文献   

16.
Protein translocation across the endoplasmic reticulum membrane occurs via a "translocon" channel formed by the Sec61p complex. In yeast, two channels exist: the canonical Sec61p channel and a homolog called Ssh1p. Here, we used trapped translocation intermediates to demonstrate that a specific signal recognition particle-dependent substrate, Sec71p, is targeted exclusively to Ssh1p. Strikingly, we found that, in the absence of Ssh1p, precursor could be successfully redirected to canonical Sec61p, demonstrating that the normal targeting reaction must involve preferential sorting to Ssh1p. Our data therefore demonstrate that Ssh1p is the primary translocon for Sec71p and reveal a novel sorting mechanism at the level of the endoplasmic reticulum membrane enabling precursors to be directed to distinct translocons. Interestingly, the Ssh1p-dependent translocation of Sec71p was found to be dependent upon Sec63p, demonstrating a previously unappreciated functional interaction between Sec63p and the Ssh1p translocon.  相似文献   

17.
GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31-52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31-52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31-52) in the absence (apoCaM) but not the presence of Ca(2+). In contrast, apoCaM association to AKAP79(31-52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31-52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII.  相似文献   

18.
This minireview focuses on recent studies implicating class V myosins in organelle and macromolecule transport within neurons. These studies reveal that class V myosins play important roles in a wide range of fundamental processes occurring within neurons, including the transport into dendritic spines of organelles that support synaptic plasticity, the establishment of neuronal shape, the specification of polarized cargo transport, and the subcellular localization of mRNA.  相似文献   

19.
Metabotropic GABAB receptors are abundantly expressed at glutamatergic synapses where they control excitability of the synapse. Here, we tested the hypothesis that glutamatergic neurotransmission may regulate GABAB receptors. We found that application of glutamate to cultured cortical neurons led to rapid down-regulation of GABAB receptors via lysosomal degradation. This effect was mimicked by selective activation of AMPA receptors and further accelerated by coactivation of group I metabotropic glutamate receptors. Inhibition of NMDA receptors, blockade of L-type Ca2+ channels, and removal of extracellular Ca2+ prevented glutamate-induced down-regulation of GABAB receptors, indicating that Ca2+ influx plays a critical role. We further established that glutamate-induced down-regulation depends on the internalization of GABAB receptors. Glutamate did not affect the rate of GABAB receptor endocytosis but led to reduced recycling of the receptors back to the plasma membrane. Blockade of lysosomal activity rescued receptor recycling, indicating that glutamate redirects GABAB receptors from the recycling to the degradation pathway. In conclusion, the data indicate that sustained activation of AMPA receptors down-regulates GABAB receptors by sorting endocytosed GABAB receptors preferentially to lysosomes for degradation on the expense of recycling. This mechanism may relieve glutamatergic synapses from GABAB receptor-mediated inhibition resulting in increased synaptic excitability.  相似文献   

20.
The majority of excitatory neurotransmission in the CNS is mediated by tetrameric AMPA receptors. Channel activation begins with a series of interactions with an agonist that binds to the cleft between the two lobes of the ligand-binding domain of each subunit. Binding leads to a series of conformational transitions, including the closure of the two lobes of the binding domain around the ligand, culminating in ion channel opening. Although a great deal has been learned from crystal structures, determining the molecular details of channel activation, deactivation, and desensitization requires measures of dynamics and stabilities of hydrogen bonds that stabilize cleft closure. The use of hydrogen-deuterium exchange at low pH provides a measure of the variation of stability of specific hydrogen bonds among agonists of different efficacy. Here, we used NMR measurements of hydrogen-deuterium exchange to determine the stability of hydrogen bonds in the GluA2 (AMPA receptor) ligand-binding domain in the presence of several full and partial agonists. The results suggest that the stabilization of hydrogen bonds between the two lobes of the binding domain is weaker for partial than for full agonists, and efficacy is correlated with the stability of these hydrogen bonds. The closure of the lobes around the agonists leads to a destabilization of the hydrogen bonding in another portion of the lobe interface, and removing an electrostatic interaction in Lobe 2 can relieve the strain. These results provide new details of transitions in the binding domain that are associated with channel activation and desensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号