首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
转化生长因子(TGF)-β超家族成员的重要生物学功能正日益引起人们的重视。受体介导的胞内信号转导研究近年有较大进展,特别是Smads蛋白介导的信号转导通路为阐明TGF-β超家族的作用机理提供了一条重要线索。TGF-β/Smads信号的转导受到机体严密的调控,并与其他信号通路存在着广泛的交叉对话效应。综述了对TGF-β/Smads信号转导通路的机制、调控,及其在维持机体正常生理功能和疾病发生中的作用的研究进展。  相似文献   

2.
Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of signaling ligands which comprise a family of pluripotent cytokines regulating a multitude of cellular events. Although BMPs were originally discovered as potent factors extractable from bone matrix that are capable to induce ectopic bone formation in soft tissues, their mode of action has been mostly studied as soluble ligands in absence of the physiologically relevant cellular microenvironment. This micro milieu is defined by supramolecular networks of extracellular matrix (ECM) proteins that specifically target BMP ligands, present them to their cellular receptors, and allow their controlled release. Here we focus on functional interactions and mechanisms that were described to control BMP bioavailability in a spatio-temporal manner within the respective tissue context. Structural disturbance of the ECM architecture due to mutations in ECM proteins leads to dysregulated BMP signaling as underlying cause for connective tissue disease pathways. We will provide an overview about current mechanistic concepts of how aberrant BMP signaling drives connective tissue destruction in inherited and chronic diseases.  相似文献   

3.
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.  相似文献   

4.
Transforming growth factor β (TGF-β) superfamily ligands have important roles in regulating cellular homeostasis, embryonic development, differentiation, proliferation, immune surveillance, angiogenesis, motility, and apoptosis in a cell type and context specific manner. TGF-β superfamily signaling pathways also have diverse roles in human cancer, functioning to either suppress or promote cancer progression. The TGF-β superfamily co-receptor, the type III TGF-β receptor (TβRIII, also known as betaglycan) mediates TGF-β superfamily ligand dependent as well as ligand independent signaling to both Smad and non-Smad signaling pathways. Loss of TβRIII expression during cancer progression and direct effects of TβRIII on regulating cell migration, invasion, proliferation, and angiogenesis support a role for TβRIII as a suppressor of cancer progression and/or as a metastasis suppressor. Defining the physiological function and mechanism of TβRIII action and alterations in TβRIII function during cancer progression should enable more effective targeting of TβRIII and TβRIII mediated functions for the diagnosis and treatment of human cancer.  相似文献   

5.
The TGF-β signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-β superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-β ligands, two TGF-β-like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-β receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. The complement of TGF-β signaling pathway components of ctenophores is more similar to that of the sponge, Amphimedon, than to cnidarians, Trichoplax, or bilaterians. The mRNA expression patterns of key genes revealed by in situ hybridization suggests that TGF-β signaling is not involved in ctenophore early axis specification. Four ligands are expressed during gastrulation in ectodermal micromeres along all three body axes, suggesting a role in transducing earlier maternal signals. Later expression patterns and experiments with the TGF-β inhibitor SB432542 suggest roles in pharyngeal morphogenesis and comb row organization.  相似文献   

6.
Transforming growth factor-β (TGF-β) regulates multiple cellular biological processes by activating TGF-β type I receptors (TGFBR1) and type II receptors (TGFBR2), and Hsp90 stabilizes these receptors through specific interactions. In many malignancies, one of the most deregulated signaling pathways is the TGF-β signaling pathway, which is often inactivated by mutations or deregulation of TGF-β type II receptors (TGFBR2). However, the molecular mechanisms are not well understood. In this study, we show that YWK-II/APLP2, an immediately early response gene for TGF-β signaling, inhibits TGF-β signaling by promoting the degradation of the TGFBR2 protein. Knockdown of YWK-II/APLP2 increases the TGFBR2 protein level and sensitizes cells to TGF-β stimulation, while YWK-II/APLP2 overexpression destabilizes TGFBR2 and desensitizes cells to TGF-β. Mechanistically, YWK-II/APLP2 is associated with TGFBR2 in a TGF-β activity-dependent manner, binds to Hsp90 to interfere with the interaction between TGFBR2 and Hsp90, and leads to enhanced ubiquitination and degradation of TGFBR2. Taken together, YWK-II/APLP2 is involved in negatively regulating the duration and intensity of TGF-β/Smad signaling and suggests that aberrantly high expression of YWK-II/APLP2 in malignancies may antagonize the growth inhibition mediated by TGF-β signaling and play a role in carcinogenesis.  相似文献   

7.
Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies.  相似文献   

8.
9.
10.
转化生长因子-β(transforming growth factor-β,TGF-β)受体Ⅲ,又称为β蛋白聚糖(betaglycan),是一种膜锚定蛋白。TGF-β受体Ⅲ是表达最为丰富的TGF-β受体,曾被认为是TGF-β超家族(包括TGF-β、激活素和抑制素等)的辅助受体。后来研究表明,它在介导和调节TGF-β的信号转导中具有非常重要的、不可替代的作用。它通过与TGF-β形成复合体来介导对靶细胞的作用。在没有TGF配体的情况下,TGF-β受体Ⅲ可以激活p38信号,表明这一受体可能与不依赖TGF-β的信号通路相互作用。TGFβ受体Ⅲ还可以结合并调节抑制素的信号转导。TGFβ受体Ⅲ与抑制素A结合,形成一个稳定的高亲和复合物。体外研究表明,TGFβ受体III还结合抑制素B和强化抑制素与Ⅱ型激活素受体的关系。有关报道显示TGFβ受体Ⅲ在卵巢癌中具有肿瘤抑制的作用。研究表明,在上皮源性卵巢癌中,TGFβ受体Ⅲ mRNA和蛋白质表达降低或丢失,丢失的程度与肿瘤分级相关。有很多因素可以影响并调节该受体的表达,如雌激素、卵泡刺激素(FSH)、TGF-β1等,深入开展相关机制的研究,对于癌症的治疗和预防将会起到一定的推动作用。  相似文献   

11.
Animals use TGF-β superfamily signal transduction pathways during development and tissue maintenance. The superfamily has traditionally been divided into TGF-β/Activin and BMP branches based on relationships between ligands, receptors, and R-Smads. Several previous reports have shown that, in cell culture systems, "BMP-specific" Smads can be phosphorylated in response to TGF-β/Activin pathway activation. Using Drosophila cell culture as well as in vivo assays, we find that Baboon, the Drosophila TGF-β/Activin-specific Type I receptor, can phosphorylate Mad, the BMP-specific R-Smad, in addition to its normal substrate, dSmad2. The Baboon-Mad activation appears direct because it occurs in the absence of canonical BMP Type I receptors. Wing phenotypes generated by Baboon gain-of-function require Mad, and are partially suppressed by over-expression of dSmad2. In the larval wing disc, activated Baboon cell-autonomously causes C-terminal Mad phosphorylation, but only when endogenous dSmad2 protein is depleted. The Baboon-Mad relationship is thus controlled by dSmad2 levels. Elevated P-Mad is seen in several tissues of dSmad2 protein-null mutant larvae, and these levels are normalized in dSmad2; baboon double mutants, indicating that the cross-talk reaction and Smad competition occur with endogenous levels of signaling components in vivo. In addition, we find that high levels of Activin signaling cause substantial turnover in dSmad2 protein, providing a potential cross-pathway signal-switching mechanism. We propose that the dual activity of TGF-β/Activin receptors is an ancient feature, and we discuss several ways this activity can modulate TGF-β signaling output.  相似文献   

12.
13.
We have characterized a 60-kDa transforming growth factor-β (TGF-β) binding protein that was originally identified on LNCaP adenocarcinoma prostate cells by affinity cross-linking of cell surface proteins by using 125I-TGF-β1. Binding of 125I-TGF-β1 to the 60-kDa protein was competed by an excess of unlabeled TGF-β1 but not by TGF-β2, TGF-β3, activin, or osteogenic protein-1 (OP-1), also termed bone morphogenetic protein-7 (BMP-7). In addition, no binding of 125I-TGF-β2 and 125I-TGF-β3 to the 60-kDa binding protein on LNCaP cells could be demonstrated by using affinity labeling techniques. The 60-kDa TGF-β binding protein showed no immunoreactivity with antibodies against the known type I and type II receptors for members of the TGF-β superfamily. Treatment of LNCaP cells with 0.25 M NaCl, 1 μg/ml heparin, or 10% glycerol caused a release of the 60-kDa protein from the cell surface. In addition, we found that the previously described TGF-β type IV receptor on GH3 cells, which does not form a heteromeric complex with TGF-β receptors, could be released from the cell surface by these same treatments. This suggests that the 60-kDa protein and the similarly sized TGF-β type IV receptor are related proteins. The eluted 60-kDa LNCaP protein was shown to interfere with the binding of TGF-β to the TGF-β receptors. Thus, the cell surface-associated 60-kDa TGF-β binding protein may play a role in regulating TGF-β binding to TGF-β receptors. J. Cell. Physiol. 173:447–459, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
TGF-β type III receptor (TβRIII) is a coreceptor for TGFβ family members required for high-affinity binding of these ligands to their receptors, potentiating their cellular functions. TGF-β [1]-[3], bone morphogenetic proteins (BMP2/4) and inhibins regulate different checkpoints during T cell differentiation. Although TβRIII is expressed on hematopoietic cells, the role of this receptor in the immune system remains elusive. Here, we provide the first evidence that TβRIII is developmentally expressed during T cell ontogeny, and plays a crucial role in thymocyte differentiation. Blocking of endogenous TβRIII in fetal thymic organ cultures led to a delay in DN-DP transition. In addition, in vitro development of TβRIII(-/-) thymic lobes also showed a significant reduction in absolute thymocyte numbers, which correlated with increased thymocyte apoptosis, resembling the phenotype reported in Inhibin α (-/-) thymic lobes. These data suggest that Inhibins and TβRIII may function as a molecular pair regulating T cell development.  相似文献   

15.
Lin F  Yang X 《遗传学报》2010,37(9):583-591
Aortic aneurysm(AA)is a common health problem with high mortality and no effective drugs.Transforming growth factor-β (TGF-β)superfamily members regulate various cellular processes,and TGF-β signaling has key roles in development,tissue homeostasis, and diseases.Interest in the role of TGF-β signaling in the pathogenesis of AAs has recently emerged,particularly since genetic studies demonstrated an association between gene mutations in components of TGF-β signaling and AAs. However, paradoxical discoveries have implicated dysregulated TGF-β signaling in aneurysm formation,complicating the precise functional role for TGF-β in aneurysm development and progression. Furthermore, interventions targeting towards TGF-β signaling using losartan, which may represent a suitable therapeutic option for AAs, were subject to skepticism especially because of conflicting experimental results obtained from TGF-β antibody treatment without knowledge of the underlying mechanism.We propose a TGF-β aneurysm paradox,which would provide a good opportunity for the development of genetic mouse models of AA.These models would be used to clarify the mechanisms underlying TGF-β signaling, which would translate into novel pharmacologic therapies based on the new molecular discoveries.  相似文献   

16.
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions.Aberrant glycosylation can lead to uncontrolled cell proliferation,cell-matrix interactions,migration and differentiation,and has been shown to be involved in cancer and other diseases.The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream.This cellular transformation process,which is associated by morphological change,loss of epithelial traits and gain of mesenchymal markers,is triggered by the secreted cytokine transforming growth factor-β(TGF-β).TGF-βbioactivity is carefully regulated,and its effects on cells are mediated by its receptors on the cell surface.In this review,we first provide a brief overview of major types of glycans,namely,N-glycans,O-glycans,glycosphingolipids and glycosaminoglycans that are involved in cancer progression.Thereafter,we summarize studies on how the glycosylation of TGF-βsignaling components regulates TGF-βsecretion,bioavailability and TGF-βreceptor function.Then,we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer.Identifying and understanding the mechanisms by which glycosylation affects TGF-βsignaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.  相似文献   

17.
Within the TGF-β superfamily, there are approximately forty ligands divided into two major branches: the TGF-β/Activin/Nodal ligands and the BMP/GDF ligands. We studied the ligand GDF3 and found that it inhibits signaling by its co-family members, the BMPs; however, GDF3 has been described by others to have Nodal-like activity. Here, we show that GDF3 can activate Nodal signaling, but only at very high doses and only upon mRNA over-expression. In contrast, GDF3 inhibits BMP signaling upon over-expression of GDF3 mRNA, as recombinant protein, and regardless of its dose. We therefore further characterized the mechanism through which GDF3 protein acts as a specific BMP inhibitor and found that the BMP inhibitory activity of GDF3 resides redundantly in the unprocessed, predominant form and in the mature form of the protein. These results confirm and extend the activity that we described for GDF3 and illuminate the experimental basis for the different observations of others. We suggest that GDF3 is either a bi-functional TGF-β ligand, or, more likely, that it is a BMP inhibitor that can artificially activate Nodal signaling under non-physiological conditions.  相似文献   

18.
19.
20.
Transforming growth factor (TGF)-βs are dimeric polypeptides that have vital roles in regulating cell growth and differentiation. They signal by assembling a receptor heterotetramer composed of two TβRI:TβRII heterodimers. To investigate whether the two heterodimers bind and signal autonomously, one of the TGF-β protomers was substituted to block receptor binding. The substituted dimer, TGF-β3 WD, bound the TβRII extracellular domain and recruited the TβRI with affinities indistinguishable from TGF-β3, but with one-half the stoichiometry. TGF-β3 WD was further shown to retain one-quarter to one-half the signalling activity of TGF-β3 in three established assays for TGF-β function. Single-molecule fluorescence imaging with GFP-tagged receptors demonstrated a measurable increase in the proportion of TβRI and TβRII dimers upon treatment with TGF-β3, but not with TGF-β3 WD. These results provide evidence that the two TβRI:TβRII heterodimers bind and signal in an autonomous manner. They further underscore how the TGF-βs diverged from the bone morphogenetic proteins, the ancestral ligands of the TGF-β superfamily that signal through a RI:RII:RII heterotrimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号