首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal and recruitment of fish in an intermittent stream network   总被引:1,自引:0,他引:1  
Animal movement is an important process connecting habitats in heterogeneous landscapes, and can play a key role in population persistence. Laboratory swim trials were conducted to determine and compare the dispersal capabilities of two native Australian fish, mountain galaxias (Galaxias olidus, Family Galaxiidae) and southern pygmy perch (Nannoperca australis, Family Nannopercidae) that maintain populations in hydrologically variable and intermittently flowing streams in south‐eastern Australia. These experiments showed that G. olidus had significantly greater swimming endurance under a range of flow velocities. Concurrent field surveys were used to establish whether swimming abilities observed in laboratory studies were consistent with patterns of inferred movement from distribution and abundance patterns observed in the field. Data collected at multiple sites from headwater to lowland reaches along multiple streams revealed substantial temporal changes in the distribution of young‐of‐year (0+) G. olidus, with spawning occurring at upland sites in winter, followed by downstream larval migration and subsequent upstream movement in late spring. Observed spatial and temporal patterns in G. olidus abundances were consistent with a source‐sink population structure, which may be disrupted by prolonged cease‐to‐flow periods during drought years. In contrast, results for N. australis suggested limited dispersal, with restricted local populations that persist at sites with permanent surface water. These field and laboratory findings complement our understanding of the spatial population structure of these two species in intermittent streams, and highlight the importance of understanding the role of dispersal in species conservation and habitat restoration.  相似文献   

2.
Summary Basal oxygen consumption, ventilatory frequency, and heart rate were recorded at four different times during the unusually protracted 15–16-month spawning run of the Southern Hemisphere lamprey Geotria australis. At 15°C, the mean basal oxygen consumption of G. australis caught immediately after they had left the sea and embarked on the spawning run (45 l · g-1 · h-1) was less than in young adults about to commence their marine feeding phase (64 l · g-1 · h-1), but greater than in large ammocoetes (26.5 l · g-1 · h-1). Basal oxygen consumption fell progressively during the spawning-run of to 33 l · g-1 · h-1 after 5 months and 25 l · g-1 · h-1 after 10 months, before rising to 35 l · g-1 · h-1 after 15 months when the animals were approaching sexual maturity. The downwards trend in basal oxygen consumption contrasts with that recorded during the spawning run of Lampetra fluviatilis. Furthermore, these values for spawning-run of G. australis are far lower than those measured at any time during the upstream migration of L. fluviatilis or during the parasitic phase of landlocked Petromyzon marinus. A low and declining metabolic rate during much of the spawning run of G. australis would facilitate the conservation of energy reserves during this very long non-feeding period. Trends shown by ventilatory frequency and heart rate essentially parallel those of basal oxygen consumption. The Q10s for basal oxygen consumption, ventilatory frequency and heart rate over the temperature range 5–25°C were 1.6, 1.6, and 1.7, respectively. The trends shown by basal oxygen consumption during metamorphosis and the upstream migration did not parallel those exhibited by circulating thyroid hormones.  相似文献   

3.
Adults of the Southern hemisphere lamprey Geotria australis were subjected to an exercise/recovery regime at the commencement and end of their 12–15 month non-trophic, upstream spawning migration. In early (immature) migrants and pre-spawning females, muscle glycogen was markedly depleted during exercise, but became rapidly replenished. As muscle lactate rose during exercise and peaked 1–1.5 h into the recovery period, and therefore after muscle glycogen had become replenished, it cannot be the direct source for that replenishment. However, both plasma lactate and glycerol (but not muscle glycerol and glucose) rose sharply during exercise and then declined markedly during the first 0.5 h of recovery and thus exhibited the opposite trend to that of muscle glycogen, implying that these limited pools of glycogenic precursors contribute to glycogen replenishment. Although plasma glucose rose following exercise, and consequently could also be a precursor for muscle glycogen replenishment, it remained elevated even after muscle glycogen had become replenished. While resting pre-spawning females and mature males retained high muscle glycogen concentrations, this energy store became permanently depleted in females during spawning. In mature males, muscle glycogen remained high and lactate low during the exercise/recovery regime, whereas muscle glycerol declined precipitously during exercise and then rose rapidly. In summary, vigorous activity by G. australis is fuelled extensively by anaerobic metabolism of glycogen early in the spawning run and by pre-spawning females, but by aerobic metabolism of its energy reserves in mature males.  相似文献   

4.
The reproductive biology and gonad cycle of three Cyprinid fish species:Barbus canis (Valenciennes, 1842),B. longiceps (Valenciennes, 1842) andCapoeta damascina (Valenciennes, 1842), in the upper Jordan River system of Israel were studied by monthly sampling over a two-year period. The reproductive activity of the three species was found to peak from January to April, mostly involving upstream migration towards spawning grounds on river beds 400–900 m above the Jordan River. Hybrids of the three species were collected in nature: in those ofBarbus canis ×Capoeta damascina, the gonads possessed both types of gametes, spermatogonia and oogonia, all of which became arrested at an early stage of development, and infertile; in hybrids of detected in nature, males had oocytes dispersed in the testis, whereas in females, the ovaries had small islets of spermatogonial tissue. In these female hybrids the oocytes ripened normally and spawning occurred.  相似文献   

5.
Synopsis The water, total lipid, protein and ash content have been measured in larval, metamorphosing (stages 1–7) and downstream migrantGeotria australis caught in Western Australia between October 1977 and August 1979. The total lipid content of ammocoetes changed markedly with season and increased with body size. Although, unlike other species, the ammocoetes ofG. australis continue to increase in length during the latter part of larval life, the relative amount of total lipid still rose during this period, eventually reaching levels equivalent to approximately 14% of the wet body weight at the commencement of metamorphosis. During the six months between the onset of metamorphosis and the downstream migration, total lipid declined to approximately 8%. Assays for phospholipid of larval and metamorphosingG. australis indicated that changes in total lipid were almost entirely due to variations in neutral lipid. Changes in the percentage amount of total lipid were accompanied by an inverse but slightly greater amount of change in percentage water. During metamorphosis, the absolute amount of total lipid in a standard animal declined from 122 mg at stage 1 to 53 mg at stage 7, whereas water rose initially from 597 mg at stage 1 to 638 mg at stage 3, before declining to 442 mg by stage 7. Although the percentage amount of protein and ash tended to increase slightly during larval life, neither showed conspicuous seasonal changes. In both relative and absolute terms, protein declined during metamorphosis. A comparison of the data on the proximate body composition inG. australis and holarctic lampreys shows that different strategies have been employed to accumulate large amounts of fat by the end of larval life and to utilize protein during metamorphosis.  相似文献   

6.
Blossom-bats, Syconycteris australis (18 g) are known to be highly active throughout the night. Since this species frequently enters torpor, we postulated that their use of heterothermy may be related to a high energy expenditure in the field. To test this hypothesis we measured field metabolic rates (FMR) of S. australis at a subtropical site using the doubly labelled water (DLW) method. We also measured DLW turnover in captive animals held at constant ambient temperature (T a) with ad libitum food to estimate whether T a and food availability affect energy expenditure under natural conditions. The FMR of S. australis was 8.55 ml CO2 g−1 h−1 or 76.87 kJ day−1 which is 7.04 times the basal metabolic rate (BMR) and one of the highest values reported for endotherms to date. Mass-specific energy expenditure by bats in the laboratory was about two-thirds of that of bats in the field, but some of this difference was explained by the greater body mass in captive bats. This suggests that foraging times in the field and laboratory were similar, and daily energy expenditure was not strongly affected by T a or ad libitum food. Water uptake in the field was significantly higher than in the laboratory, most likely because nectar contained more water than the laboratory diet. Our study shows that S. australis has a FMR that is about double that predicted for its size although its BMR is lower than predicted. This supports the view that caution must be used in making assumptions from measurements of BMR in the laboratory about energy and other biological requirements in free-ranging animals. Accepted: 4 January 1999  相似文献   

7.
Lampreys are one of the two surviving groups of the agnathan (jawless) stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB) to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells are more sensitive to environmental changes associated with migration.  相似文献   

8.
Summary Newly-metamorphosed individuals of some species of frogs and toads differ from adults in behavior, ecology, and physiology. These differences may be related to broader patterns of the life histories of different species of frogs. In particular, the length of larval life and the size of a frog at metamorphosis appear to be significant factors in post-metamorphic ontogenetic change. These changes in performance are associated with rapid post-metamorphic increases in oxygen transport capacity. Bufo americanus (American toads) and Rana sylvatica (wood frogs) spend only 2–3 months as tadpoles and metamorphose at body masses of 0.25 g or less. Individuals of these species improve endurance and aerobic capacity rapidly during the predispersal period immediately following metamorphosis. Increases in hematocrit, hemoglobin concentration, and heart mass relative to body mass are associated with this improvement in organismal performance. Rana clamitans (green frogs) spend from 3 to 10 months as larvae and weigh 3 g at metamorphosis. Green frogs did not show immediate post-metamorphic increases in performance. Rana palustris (pickerel frogs) are intermediate to wood frogs and green frogs in length of larval life and in size at metamorphosis, and they are intermediate also in their post-metamorphic physiological changes.American toads and wood frogs appear to delay dispersal from their natal ponds while they undergo rapid post-metamorphic growth and development, whereas green frogs disperse as soon as they leave the water, even before they have fully absorbed their tails. The very small body sizes of newly metamorphosed toads and wood frogs appear to limit the scope of their behaviors. The brief larval periods of these species permit them to exploit transient aquatic habitats, but impose costs in the form of a period of post-metamorphic life in which their activities are restricted in time and space compared to those of adults.  相似文献   

9.
Understanding the functional role of animal species in seed dispersal is central to determining how biotic interactions could be affected by anthropogenic drivers. In the Monte Desert, mammals play different functional roles in Prosopis flexuosa seed dispersal, acting as opportunistic frugivores (endozoochorous medium‐sized and large mammals) or seed hoarders (some small sigmodontine rodents). Our objective was assessing the functional role of Microcavia australis, a small hystricognathi rodent, in the fruit removal and seed deposition stages of P. flexuosa seed dispersal, compared to sympatric sigmodontine rodents. In situ, we quantified fruit removal by small rodents during non‐fruiting and fruiting periods, and determined the distance seeds were transported, particularly by M. australis. In laboratory experiments, we analysed how M. australis stores seeds (through scatter‐ or larder‐hoarding) and how many seeds are left in caches as living seeds, relative to previous data on sigmodontine rodents. To conduct field studies, we established sampling stations under randomly chosen P. flexuosa trees at the Ñacuñán Man and Biosphere Reserve. We analysed fruit removal by small rodents and seed dispersal distance by M. australis using camera traps focused on P. flexuosa fruits covered with wire screen, which only allowed entry of small animals. In laboratory trials, we provided animals with a known number of fruits and assessed seed conditions after removal. Small rodents removed 75.7% of fruit supplied during the non‐fruiting period and 53.2% during the fruiting period. Microcavia australis and Graomys griseoflavus were the main fruit removers. Microcavia australis transported seeds to a mean distance of 462 cm and cached seeds mainly in scatter‐hoards, similarly as Eligmodontia typus. All transported seeds were left in fruit segments or covered only by the endocarp, never as predated seeds. Microcavia australis disperses P. flexuosa seeds by carrying fruits away from a source to consume them and then by scatter‐hoarding fruits and seeds.  相似文献   

10.
Data are presented for a wide variety of different measurements and observations made on representatives of the lamprey Geotria australis caught during the first four months after they had left the sea in seven successive years. Comparisons have been made with the trends shown by similar data obtained from animals subsequently held in the laboratory for a number of months to provide information on the subsequent pattern of changes and the duration of the spawning run. In comparison with anadromous holarctic species, the gonads at the beginning of the upstream migration in July were very small. The eggs, which did not yet contain yolk platelets, measured only 190 μm in diameter and took until October of the following year to reach 1120 μm, which is comparable to the size of the mature eggs of other lampreys. This indicates that the spawning run of G. australis lasts for the exceptionally long period of 16 months, which is consistent with the time of appearance of young larvae. At the commencement of the spawning run, the mean lengths and weights of G. australis were approximately 655 mm and 250 g. Hepatosomic (c. 0·8%) and heart ratios (c. 0·18%) were significantly lower than those of other species. The relatively long length of the trunk, which was associated with a very high mean myomere number (78·8), helped to compensate for a small body depth and permitted the production of a large number of eggs (mean fecundity 57,943). The intestine underwent rapid atrophy immediately after the animal entered fresh water, even though the gonads were not developing rapidly at this time. Migratory movements in the river were most marked on nights when water levels were rising, the temperature lay between 12 and 14.5°C, rain was falling and extensive cloud cover or the dark phase of the moon was present.  相似文献   

11.
Factors influencing the spawning migration of female anadromous brown trout   总被引:2,自引:0,他引:2  
Radio telemetry was employed to study movements of adult female anadromous brown trout Salmo trutta (sea trout) during upstream spawning migration and following spawning in a stream with tributaries. Sea trout were monitored by manual tracking and by automatic listening stations. The latter suggested that initiation of upstream migration was positively correlated with stream discharge. Individual sea trout performed repeated upstream migration 'initiations'(visits) to areas where they were detected by the automatic listening stations. The first and subsequent upstream migration 'initiations' occurred under conditions of similar water temperature and stream discharge. Manual tracking indicated that in the pre‐spawning state, the distance migrated over 3 days was positively correlated with stream discharge and water temperature, whereas in the post‐spawning state, the total distance migrated was not correlated with any of these two environmental variables.  相似文献   

12.
Invasive geckos of the genus Hemidactylus (Gekkonidae) are spreading rapidly through urban environments in many tropical and subtropical parts of the world. The invaders have caused rapid declines in native gecko abundance in some areas, but their interactions with Australian native species remain unknown. In a small rural village near Darwin, we found that Hemidactylus frenatus is abundant around both lighted and unlighted buildings, but rarely found in surrounding bushland. It is sympatric with the larger Gehyra australis (Gekkonidae) in this disturbed site, and often forages on the same buildings, but is active mostly during the dry‐season (vs. wet‐season for G. australis) and is competitively subordinate to the larger native species. In laboratory encounters, H. frenatus fled from G. australis, and modified its refuge‐site use in the presence of the native lizard. In those same trials, the native gecko often attacked and rarely fled; and did not shift its refuge‐site selection. In field surveys, the two taxa frequently co‐occurred. However, substrate use of the invasive H. frenatus was modified by the presence of the native G. australis, consistent with competitive displacement. Our counts of H. frenatus were highest during the dry‐season, when G. australis (like most other small native reptiles) is relatively inactive. The invasive gecko thus appears to be exploiting a ‘vacant niche’ around buildings, rather than displacing the native gecko taxon. This outcome may reflect the size disparity between the native species and the invader; Hemidactylus frenatus may well have significant ecological impacts on smaller native lizards.  相似文献   

13.
Galaxias maculatus, broadly distributed in the southern hemisphere, presents both diadromic and landlocked populations. The upstream migration of larvae and juveniles from the sea to freshwater habitats is a characteristic phenomenon of diadromous populations, but upstream migration has never been reported in those that are landlocked. The objective of this study was to establish the population dynamics of a peculiar riverine landlocked population that presents an upstream migration at the larvae–juvenile transition from the Piedra del Águila Reservoir to the Caleufú River (Argentina). A spawning season from September to November and the arrival of shoals of metamorphic larvae and juveniles from February to April to the adult habitat were coincidental with lacustrine landlocked populations, but not with diadromous populations. Growth rate and age at migration, 147 ± 22.6 days, were also similar to other landlocked and diadromous populations. The arrival of these shoals produced a 20‐fold increase in fish density while the two cohorts of G. maculatus overlapped in time and space. No significant differences in morphology or vertebrae number were detected when riverine and reservoir adults were compared. The great life history plasticity of G. maculatus, shown to be even greater in our results, could be the key to explain the wide distribution of this species in the southern hemisphere. Likewise, discovering this juvenile potamodromous behaviour in a landlocked population will provide a new view for the analysis of the ways of this species’ dispersion in continental waters.  相似文献   

14.
We sampled juvenile fish approximately fortnightly using a fine mesh beach seine net to determine the recruitment patterns of Sillago ciliata, Centropogon australis and Girella tricuspidata to seagrass, Zostera capricorni, habitats in Botany Bay, south-eastern Australia. We used trends in the length frequency distributions of juveniles to estimate the timing of recruitment events, rates of post-settlement growth and the residence time of each species in seagrass. We detected discrete pulses of recruitment by each species. The timing of recruitment events by S. ciliata reflected the timing of spawning events. Recruitment by G. tricuspidata reflected lunar or tidal cycles. The factors influencing the timing of recruitment by C. australis were unclear. The growth rate of S. ciliata length cohorts varied and was positively related to estuarine water temperature. The timing of emigration from seagrass of C. australis and G. tricuspidata juveniles appeared to be length-dependant.  相似文献   

15.
From July to March, the testis of the spring‐spawning freshwater goby Padogobius martensi is characterized by spermatogonial proliferation. A close correlation exists among type of proliferating spermatogonia, gonado‐somatic (IG) profiles and morphological and functional variations of the Leydig cells. The IG reach their minimal levels by the end of summer and increase progressively but modestly during autumn and winter. Declining IG levels are associated with proliferation of primary spermatogonia only, whereas increasing IG levels are associated with predominant proliferation of secondary spermatogonia. Minimal IG levels are reached when the germinal epithelium is formed by a continuum of primary spermatogonia and associated Sertoli cells. The proliferation of secondary spermatogonia begins only at this time. Spermatogenesis in autumn occurs when spermatogonial cysts contain at the most 16 cells and it rarely results in the maturation of several cysts so that the amount of sperm cells produced is either negligible or scarce. A number of degenerating cells are usually present within the spermatogonial and meiotic cysts. Leydig cells are the unique cells that display features of steroidogenic cells: mitochondria with tubular cristae, extensive smooth endoplasmic reticulum (SER), 3β‐hydroxysteroid dehydrogenase (3β‐HSD) and glucose‐6‐phosphate dehydrogenase (G6PD) activity and sudanophilia. Light and dark Leydig cell varieties are always present. During regression, Leydig cells undergo a marked decrease in SER amount, mitochondrial sizes and number of mitochondrial cristae. In parallel, the 3β‐HSD and G6PD activities and sudanophilia decrease progressively until they become undetectable by the end of regression. In autumn, mitochondria increase in size, reaching sizes similar to those observed at the end of the spawning season in the light cells, but not in the dark cells. The SER, on the contrary, undergoes a modest and irregular increase only in a part of the Leydig cells, mostly of the light type. In parallel, the 3β‐HSD and G6PD activities increase until they become moderately intense by the end of autumn. At the end of winter, the SER is extensive and regularly dilated in both Leydig cell types, whereas mitochondria still have sizes similar to those observed in December. The 3β‐HSD and G6PD activities are strong and sudanophilia is again detectable. Sertoli cells undergo changes in shape and position in relation to the proliferation of primary spermatogonia and the development of cysts. A junction modulation occurs in association with these changes. Sertoli cells also undergo changes indicative of a decrease in activity immediately after spawning (loss of mitochondrial cristae and clarification of the mitochondrial matrix) and of an increase in activity by the end of the regressing phase (darkening of the mitochondrial matrix and increase in mitochondrial cristae, rough endoplasmic reticulum (RER) and free ribosomes). In addition, they are involved in the phagocytosis of degenerating germ cells at all stages of their development. Macrophages are found in the testis interstitium only, where they are usually adjacent to Leydig cells, myoid cells and blood capillaries and do not participate in the phagocytosis of degenerating germ cells. Myoid cells do not undergo ultrastructural changes except for an increase in the amount of heterochromatin by the end of spawning. The meaning of the autumnal spermatogenic wave and the relationships between the development of the germinal epithelium and the changes of the Leydig and Sertoli cells are discussed.  相似文献   

16.
The annual reproductive cycle of the New Zealand starfish Stichaster australis (Verrill) was determined at Maori Bay on the west coast of Auckland. S. australis has a clearly defined summer breeding season, closely repeated from year to year. Changes in the gonad shown by histological sections confirmed this cycle.S. australis juveniles reared in the laboratory were maintained on Mesophyllum insigne (Foslie) Adey substrata and the growth rates and feeding behaviour of individual starfish were determined. Settlement on the shore was from May to July each year. When the time of spawning is considered this implies a planktotrophic larval life of ≈ 6 months. This is considerably longer than laboratory studies on larval development would suggest.Growth of yearly settlement cohorts on a nursery site on the shore used in conjunction with laboratory results gave a fairly clear picture of growth after settlement. Growth rates followed a typical sigmoid curve, growth being slow initially and becoming more rapid later. The numbers of juveniles recruited to nursery areas vary from year to year but mortality following settlement appears to be low. It was found that juvenile Stichaster australis graze Mesophyllum insigne exclusively until they reach ≈ 0.8 cm in diameter (7–8 months old) when they may occasionally predate juvenile Perna canaliculus (Gmelin). The incidence of carnivorous feeding gradually increases until juveniles are ≈ 2.0–2.5 cm in diameter (15–18 months old) by which time they are exclusively carnivorous on small P. canaliculus. As growth continues juvenile starfish gradually migrate from nursery areas to adjacent reefs where there are dense beds of adult P. canaliculus. Starfish of this species become sexually mature when they reach ≈ 5–8 cm in diameter.  相似文献   

17.
The freshwater clam Corbicula australis is an important component of the macrobiota of the river systems of southeast Australia. Reproduction of two populations of this clam in the Nepean River at Douglas Park and Menangle was investigated to document the gametogenic cycle, larval morphology and to determine when they incubate embryos. C. australis is a simultaneous hermaphrodite and broods its young in the inner demibranchs. The gonads are ovotestes with oogenic and spermatogenic regions in each ascinus. The sperm are biflagellate, a condition unique in the Bivalvia to clonal corbiculids. Gametogenesis was continuous and did not exhibit a seasonal pattern. In contrast, spawning and incubation of embryos was limited to the warmer months of the year. Embryos were present in the gills from October to May. C. australis develops through a modified veliger larva with a vestigially ciliated velum which is not used for swimming or particle capture. The velum is covered by microvilli and it is suggested that the velar epithelium may be specialised for nutrient uptake in the marsupial environment. C. australis produces several clutches each year and the young are released as advanced juveniles with a well-developed foot. Reproductive output differed between the two populations. This was in part due to the larger size of the clams from Menangle and may also reflect the enhanced productivity at this site. The suite of life history traits exhibited by C. australis: hermaphroditism, potential for self-fertilization/androgenesis, brooding progeny to the crawl-away juvenile stage and a high reproductive output, provide for rapid colonization and population growth in this clam which typically inhabits disturbance prone sandy lotic habitats.  相似文献   

18.
The spawning biomass of Australian anchovy Engraulis australis in gulf and shelf waters of South Australia was compared using the daily egg production method (DEPM). The total survey area was 128 700 km2 with recorded spawning areas in gulf and shelf waters of 4898 and 44 618 km2, respectively. High egg densities in the warm, shallow gulf waters were produced by small, young (<1 year old) E. australis that spawned relatively small batches of eggs (c. 855) approximately every 3 days. In cooler, deeper shelf waters, where larger, older E. australis are found, lower egg densities occurred despite individuals producing much larger batches of eggs (c. 15 572) approximately every 7 days. In shelf waters, the highest densities were recorded at inshore sampling stations. Spawning appeared to peak between 0000 and 0100 hours. Females were more abundant than males in samples from both gulf and shelf waters with sex ratios of 0·61 and 0·56, respectively. The spawning biomass of E. australis in shelf waters was 101 522 t, whereas the estimate for gulf waters was 25 374 t. Due to the differences in mean size of the spawning females, however, c. 6 × 109E. australis were present in each region. The results support the hypothesis that variability in habitat conditions may directly influence E. australis reproduction. A large reserve of young fish in the relatively stable gulf environment may increase the resilience of the E. australis population in South Australia to unfavourable interannual changes in offshore environmental conditions.  相似文献   

19.
Synopsis Counts of pre-metamorphic and post-metamorphic daily increments in the sagittae of settled juvenilePagrus auratus were used to determine duration of the larval period and to back-calculate spawning dates. The duration of the larval period was 18–32 days, and was longer for snapper spawned early in the spawning season, when water temperatures were low, than for snapper spawned later in the season when temperatures were high. Sagitta size at metamorphosis was unrelated to duration of the larval period or temperature, and mean increment width during the larval period increased with temperature. These results suggest that metamorphosis is size- rather than age-dependent. Back-calculated spawning dates ranged from September to March, and peaked in November-January. Maximum spawning season duration was five months. Spawning onset was earlier when spring water temperature was higher than normal, and first spawning occurred at 14.8–15.6 °C over three seasons, indicating that spawning onset is temperature-dependent.  相似文献   

20.
Measurements have been made of those changes which lead to increases in the surface area of the intestine during the metamorphosis of three species of lampreys. Although the intestine of the Southern Hemisphere lamprey, Geotria australis, increases in length by 1.13 times and in diameter by 1.12 times, the main factor influencing the 5.71 times increase in surface area is the development of longitudinal folds. The contribution of the typhlosole to the internal perimeter of the intestine is less in most life cycle stages of G. australis than in Lampetra spp. The changes in the various intestinal measurements of the nonparasitic species L. planeri parallel those of the presumed ancestral parasitic species, L. fluviatilis, during the first six stages of metamorphosis. However, the longitudinal folds, but not the typhlosole, subsequently start regressing in L. planeri just after the time when the rate of gonadal development increases markedly. An account is also given of the pattern of fold formation and the development of the typhlosolar vein in G. australis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号