首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forty-seven species of desmids, representing all four families, were examined for the presence of the xanthophyll loroxanthin by reverse-phase high-performance liquid chromatography. In the Desmidiaceae 28 of the 35 species examined possessed loroxanthin, and in the Mesotaeniaceae two of the six examined had loroxanthin present. All six species of the families Peniaceae and Closteriaceae examined possessed loroxanthin. Although the distribution of loroxanthin appears to be disjunct in the desmids and does not have strict taxonomic significance, it does follow a coherent pattern consistent with current ideas on desmid phylogeny. This pattern suggests that loroxanthin synthesis probably evolved once in the desmid lineage, with one or more subsequent reversals.  相似文献   

2.
The distribution of loroxanthin in chlorophycean flagellates is consistent with their phylogeny as inferred from molecular and organismal characters. Although polarity of this character cannot yet be determined, if the absence of loroxanthin is plesiomorphic for chlorophycean flagellates, the presence of loroxanthin defines a clade that includes the Euchlamydomonas morphological group, two other species of Chlamydomonas, C. asymmetrica and C. oblonga, and Gonium pectorale. A subsequent reversal to loroxanthin absence is apomorphic for the more complex volvocacean taxa. These results suggest that loroxanthin distribution will be useful for resolving phylogenetic questions in green algae .  相似文献   

3.
Photosynthetic pigments were analyzed by HPLC for 27 samples of the Cladophorales (Ulvophyceae, Chlorophyta). The carotenoid compositions of the examined algae were classified into three types based on the final compound of biosynthesis of the α‐carotene branch: lutein type, characterized by containing lutein as a major carotenoid and lacking loroxanthin and siphonaxanthin; loroxanthin type, characterized by containing loroxanthin and lacking siphonaxanthin; and siphonaxanthin type, characterized by containing siphonaxanthin. We constructed molecular phylogenetic tree of the species examined in the present study using 18S rRNA gene sequences and mapped the carotenoid types of the species onto the tree. The molecular phylogenetic analysis divided the Cladophorales into two major clades, clade 1 and Aegagropila‐clade (clade 2), and divided clade 1 into subclade 1‐1 and subclade 1‐2. All the examined species positioned in the Aegagropila‐clade and those of the subclade 1‐1 belonged to the loroxanthin type, whereas both lutein type and siphonaxanthin type appeared only in the subclade 1‐2. The clades delineated by molecular phylogenetic analysis were congruent with distribution of the carotenoid types, indicating that the carotenoid types are of taxonomic significance in the Cladophorales. Considering the distribution pattern of these carotenoid types and minimum state changes in the Cladophorales, we concluded that the loroxanthin type was the primitive (plesiomorphic) state and the siphonaxanthin type and lutein type appeared in the subclade 1‐2 as advanced (apomorphic) state within this order and suggested that the cladophoralean siphonaxanthin type would have been secondarily acquired.  相似文献   

4.
The ecological importance and diversity of pico/nanoplanktonic algae remains poorly studied in marine waters, in part because many are tiny and without distinctive morphological features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear to be major players in open oceanic waters. The pigment composition of 14 strains representative of different subclades of clade VII was analyzed using a method that improves the separation of loroxanthin and neoxanthin. All the prasinophytes clade VII analyzed here showed a pigment composition similar to that previously reported for RCC287 corresponding to pigment group prasino‐2A. However, we detected in addition astaxanthin for which it is the first report in prasinophytes. Among the strains analyzed, the pigment signature is qualitatively similar within subclades A and B. By contrast, RCC3402 from subclade C (Picocystis) lacks loroxanthin, astaxanthin, and antheraxanthin but contains alloxanthin, diatoxanthin, and monadoxanthin that are usually found in diatoms or cryptophytes. For subclades A and B, loroxanthin was lowest at highest light irradiance suggesting a light‐harvesting role of this pigment in clade VII as in Tetraselmis.  相似文献   

5.
The functional and biochemical aspects of the photosynthetic apparatus in response to UV-B radiation were examined in unicellular oxygenic algae Scenedesmus obliquus. The wild type (Wt) and a chlorophyll b-less mutant (Wt-lhc) were used as a specific tool for the understanding of antenna role. Photosynthesis was monitored during and after UV-B stress by time resolved fluorescence spectroscopy and polarography. Carotenoids, such as neoxanthin, loroxanthin, lutein, violaxanthin, antheraxanthin, zeaxanthin, alpha- and beta-carotene, cellular and thylakoid-associated putrescine, spermidine, spermine and subcomplexes of light-harvesting complex (LHCII) of photosystem II (PSII) were investigated to assess their possible involvement in response to UV-B. Oxygen evolution depression by UV-B was higher in the Wt-lhc mutant than in the Wt. Photosynthesis recovery occurred in the Wt, but not in the mutant. The dissipation of excess excitation energy during UV-B stress was accompanied by changes in the thylakoid-associated polyamines which were much higher than changes in xanthophylls. We conclude that, at least in the unicellular green alga S. obliquus, mutants lacking chlorophyll b have significant lower capacity for recovery after UV-B stress. In addition, the comparison of xanthophylls and thylakoid-associated polyamines reveals that the latter are more responsive to UV-B stress and in a reversible manner.  相似文献   

6.
The 22 published chloroplast genomes of green algae, representing sparse taxonomic sampling of diverse lineages that span over one billion years of evolution, each possess a unique gene arrangement. In contrast, many of the >190 published embryophyte (land plant) chloroplast genomes have relatively conserved architectures. To determine the phylogenetic depth at which chloroplast gene rearrangements occur in green algae, a 1.5-4 kb segment of the chloroplast genome was compared across nine species in three closely related genera of Trebouxiophyceae (Chlorophyta). In total, four distinct gene arrangements were obtained for the three genera Elliptochloris, Hemichloris, and Coccomyxa. In Elliptochloris, three distinct chloroplast gene arrangements were detected, one of which is shared with members of its sister genus Hemichloris. Both species of Coccomyxa examined share the fourth arrangement of this genome region, one characterized by very long spacers. Next, the order of genes found in this segment of the chloroplast genome was compared across green algae and land plants. As taxonomic ranks are not equivalent among different groups of organisms, the maximum molecular divergence among taxa sharing a common gene arrangement in this genome segment was compared. Well-supported clades possessing a single gene order had similar phylogenetic depth in green algae and embryophytes. When the dominant gene order of this chloroplast segment in embryophytes was assumed to be ancestral for land plants, the maximum molecular divergence was found to be over two times greater in embryophytes than in trebouxiophyte green algae. This study greatly expands information about chloroplast genome variation in green algae, is the first to demonstrate such variation among congeneric green algae, and further illustrates the fluidity of green algal chloroplast genome architecture in comparison to that of many embryophytes.  相似文献   

7.
Abstract Among the brown algae, species of the Fucaceae (Pelvetia, Fucus and Ascophyllum) were found to have a ‘photosynthetic buffering’ system, allowing the algae to carry out oxygen production without a concomitant uptake of inorganic carbon. This system was not found in other brown algae examined (e.g. Halidrys, Laminaria and Desmarestia) nor in 16 examined species of red and green algae. Pelvetia, Fucus and Ascophyllum belong to the littoral algae which are periodically emersed. In the Fucaceae, the meristodermal cells were found to have a special organization of organelles. Towards the outer cell wall there was a prominent layer of mitochondria while the chloroplasts were concentrated towards the inner and side walls. Between the mitochondria and the chloroplasts there was a large number of physodes. This arrangement of organelles was not found in the other brown algae examined nor in red or green algae. The significance of this organization of the mitochondria is discussed in connection with the function of the ‘photosynthetic buffering’ system.  相似文献   

8.
研究对中国绿水螅共生绿藻的核18S rRNA基因全长序列及其叶绿体9个基因(atpA、chlB、chlN、petA、psaB、psbA、psbC、psbD及rbcL)片段序列进行了克隆和测序, 并基于18S rRNA基因序列及叶绿体9个基因序列的整合数据分别通过最大似然法(Maximum-likelihood)和贝叶斯分析(Bayesian inference)对中国绿水螅(Hydra sinensis)共生单细胞绿藻的系统发生地位进行了探讨。系统发生表明: (1)中国绿水螅共生绿藻属于共球藻纲(Trebouxiophyceae)小球藻目(Chlorellales), 但不属于其中的小球藻属(Chlorella); (2)来源于草履虫、水螅、地衣及银杏的共生绿藻均在共球藻纲支系, 而来源于蛙类和蝾螈的共生绿藻属于绿藻纲(Chlorophyceae)支系。无论在共球藻纲支系还是在绿藻纲支系, 不同来源的共生藻并没有排他性地聚为单系群而在系统树中与其他自由生活的绿藻混杂排列, 来自不同宿主的共生绿藻没有共同起源。  相似文献   

9.
The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide. Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei. Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules. No other microtubules are associated with the furrow. Characteristics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae.  相似文献   

10.
Fifteen species from different genera of blue-green algae have been examined for their formation of plastocyanin (PC) and cytochrome c-553 (cyt c-553) in high or low Cu media. In addition to species which contain only cyt c-553 and those which completely exchange their cyt c-553 by PC, a new regulatory type was detected in which this exchange was incomplete. By comparing different species, it could be shown that either this incomplete exchange of cyt c-553 by PC as well as lack of PC in some other blue-green algae is not caused by restricted Cu uptake but is due to different biosynthetic and regulatory properties. Occurrence of PC and cyt c-553 cannot be used as a taxonomic criterium to classify blue-green algae. However, formation of either one or both of these redox components fits well into a line of evolution of the photosynthetic apparatus from the blue-green algae via green algae to higher plants.Abbreviations PC plastocyanin; cyt c-553, cytochrome c-553  相似文献   

11.
Fatty acid analyses of several filamentous green algae were conducted using gas-liquid chromatography. Two bryophytes were also examined. Qualitatively, the genera of algae studied were divided into two groups: (A) algae that have significant amounts of polyunsaturated C20 fatty acids and (B) algae that lack or only have very small amounts of the C20 acids. On the basis of fatty acid content, the algae of Group A more closely resemble the bryophytes than do the algae of Group B. Culture age was shown to cause quantitative but not qualitative variations in fatty acid content. It is evident from this study that extrapolation to land plants, from studies on the fatty acid content of the green algae, should include the filamentous forms.  相似文献   

12.
The order Chaetophorales includes filamentous green algae whose taxonomic relationships to other chlorophycean orders is uncertain. Chaetophoralean taxa include filamentous species which are both branched and unbranched. Ultrastructural studies of zoospores have revealed similar flagellar apparatuses in a number of genera, including Uronema, Stigeoclonium, and Fritschiella, suggesting a close phylogenetic relationship among these taxa. The order Oedogoniales represents a second group of branched and unbranched filamentous green algae whose relationships to other chlorophycean orders also has been unclear. A possible close relationship between the Chaetophorales and Oedogoniales has been suggested. Using DNA sequences from the small-subunit ribosomal RNA gene (SSU rRNA) of several members of each order, we have examined the monophyly of the Chaetophorales and Oedogoniales, as well as the nature of their relationship to other chlorophycean orders. Our results show that chaetophoralean and oedogonialean taxa form separate monophyletic groups. Results also suggest that the two orders are not closely related to each other.  相似文献   

13.
In Chlorophycean algal cells, these organelles are generally called microbodies because they lack the enzymes found in the peroxisomes of higher plants. Microbodies in some algae contain fewer enzymes than the peroxisomes of higher plants, and some unicellular green algae in Chlorophyceae such as Chlamydomonas reinhardtii do not possess catalase, an enzyme commonly found in peroxisomes. Thus, whether microbodies in Chlorophycean algae are similar to the peroxisomes of higher plants, and whether they use a similar transport mechanism for the peroxisomal targeting signal (PTS), remain unclear. To determine whether the PTS is present in the microbodies of Chlorophycean algae, and to visualize the microbodies in Chlamydomonas cells, we examined the sub-cellular localization of green fluorescent proteins (GFP) fused to several PTS-like sequences. We detected GFP compartments that were spherical with a diameter of 0.3-1.0?μm in transgenic Chlamydomonas. Comparative analysis of the character of GFP-compartments observed by fluorescence microscopy and that of microbodies by electron microscopy indicated that the compartments were one and the same. The result also showed that the microbodies in Chlorophycean cells have a similar transport mechanism to that of peroxisomes of higher plants.  相似文献   

14.
海藻中清除氧自由基的物质   总被引:8,自引:0,他引:8  
新鲜海藻的提取液含有超氧物歧化酶(SOD)活性物质,能清除超氧自由基(O2-)。海藻的SOD活性通常为60—280Ug-1FW,而在孔石莼(Ulvapertusa)、江蓠(Gracilariaverrucosa)和凤尾菜(G.eucheumoices)中活性较高,约为300Ug-1FW。一般来说,海藻的SOD活性和稳定性为:绿藻>红藻>褐藻。绿藻的SOD以CuZn-型为主,而蓝藻的SOD以Fe-型为主。以江蓠琼枝(Eucheumagelatinae)提取液作PAGE并SOD活性染色时,除了观察到SOD同工酶带之外,还发现在前沿指示剂附近有一区域,此区域与高效自由基清除剂SPD(Superphycodismutas)的电泳行为和对氮蓝四唑(NBT)负染色的抑制相同,可能两者为同一种物质。  相似文献   

15.
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl‐CoA‐independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection‐pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.  相似文献   

16.
PRIMARY AND SECONDARY ENDOSYMBIOSIS AND THE ORIGIN OF PLASTIDS   总被引:4,自引:0,他引:4  
The theory of endosymbiosis describes the origin of plastids from cyanobacterial-like prokaryotes living within eukaryotic host cells. The endosymbionts are much reduced, but morphological, biochemical, and molecular studies provide clear evidence of a prokaryotic ancestry for plastids. There appears to have been a single (primary) endosymbiosis that produced plastids with two bounding membranes, such as those in green algae, plants, red algae, and glaucophytes. A subsequent round of endosymbioses, in which red or green algae were engulfed and retained by eukaryotic hosts, transferred photosynthesis into other eukaryotic lineages. These endosymbiotic plastid acquisitions from eukaryotic algae are referred to as secondary endosymbioses, and the resulting plastids classically have three or four bounding membranes. Secondary endosymbioses have been a potent factor in eukaryotic evolution, producing much of the modern diversity of life.  相似文献   

17.

Some algae are known to grow on shellfish shells. Most of these have been reported in aquatic environments. The species specificity for substrate shells varies, and some algae grow only on the shells of a certain species of shellfish, such as Pseudocladophora conchopheria (Cladophorales, Ulvophyceae) on Lunella coreensis (Trochida, Gastropoda). There are very few reports of algae that grow on land snails. In this study, we discovered green algae growing on the shells of six species of door snails (Clausiliidae) from nine localities in Japan. These green algae formed a green mat composed of thalli embedded in the extracellular matrix. The thallus was composed of aggregated oval cells and peripheral branched filaments. The cells possessed a single parietal chloroplast with a pyrenoid surrounded by two starch sheaths and transversed by a thylakoid. Oil droplets in the cell and ring-like structures on the cell wall surface were frequently observed. The 18S rDNA sequences of all shell-attached algae on different clausiliid species from different localities were almost identical and formed a new clade in the family Kornmanniaceae (Ulvales, Ulvophyceae). No other algae forming visible colonies on the clausiliid shell were found. These findings indicate the presence of specificity between the alga and clausiliid shells. Based on the results of morphological observation and molecular phylogenetic analysis, we propose a new genus and new species of shell-attached green alga, Annulotesta cochlephila.

  相似文献   

18.
The photosynthetic pigment composition of Mesostigma viride Lauterborn, a primitive green alga, was determined. This alga contained chl a and b, lycopene, lutein, siphonaxanthin, γ‐carotene, β‐carotene, antheraxanthin, violaxanthin, neoxanthin, and two novel carotenoid fatty acid esters, siphonaxanthin C12:0 ester and siphonaxanthin C14:0 ester. The esters were saturated, whereas all previously identified siphonaxanthin and loroxanthin esters have been mono‐unsaturated (trans‐Δ2). Neoxanthin was the all‐trans form. This is the first such case detected in the chloroplasts of green plants. The 9′‐cis form of neoxanthin is believed to be universally present in the chloroplasts of green plants (Streptophyta and Chlorophyta) and is a precursor of abscisic acid. However, the 9′‐cis form was not found in M. viride. Based on these results, we discuss the phylogenetic implications and early evolution of the antenna pigment system in green plants.  相似文献   

19.
The conjugating green algae represent a lineage of charophyte green algae known for their structural diversity and unusual mode of sexual reproduction, conjugation. These algae are ubiquitous in freshwater environments, where they are often important primary producers, but few studies have investigated evolutionary relationships in a molecular systematic context. A 109‐taxon data set consisting of three gene fragments (two from the chloroplast and one from the mitochondrial genome) was used to estimate the phylogeny of the genera of the conjugating green algae. Maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) were used to estimate relationships from the 4,047 alignable nucleotides. This study confirmed the polyphyly of the Zygnemataceae and Mesotaeniaceae with respect to one another. The Peniaceae were determined to be paraphyletic, and two genera traditionally classified among the Zygnematales appear to belong to the lineage that gave rise to the Desmidiales. Six genera, Euastrum, Cosmarium, Cylindrocystis, Mesotaenium, Spondylosium, and Staurodesmus, were polyphyletic in this analysis. These findings have important implications for the evolution of structural characteristics in the group and will require some taxonomic changes. More work will be required to delineate lineages of Zygnematales in particular and to identify structural synapomorphies for some of the newly identified clades.  相似文献   

20.
柴达木盆地荒漠土壤蓝藻群落的初步研究   总被引:6,自引:0,他引:6  
本文分析了柴达木盆地东部和中部具有代表性地区的丘陵、戈壁和沙丘的蓝藻种类组成、生物量及主要的土壤化学成分;采用了模糊聚类、系统聚类及多元线性回归等方法分析藻类的群落及其与环境因子的关系。共鉴定出21种蓝藻,其中6种为国内首次报道。研究表明:土壤含磷量、总盐量及与粘性和湿度有关的土壤结构是决定柴达木盆地蓝藻群落组成的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号