首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sterols were identified in six marine prymnesiophyte isolates, some of which appear to have value as bivalve food. The principal sterol in Pleurochrysis carterae (Milford #961) and an unidentified prymnesiophyte (CCMP1215) was 24-methylcholesta-5,22-dienol, a common sterol in prymnesiophytes. Isolates CCMP594, CCMP609, and CCMP459 contained either 24-ethylcholesta-5,22-dienol or 24-ethylcholest-22-enol as the major sterol. In addition, Pavlova pinguis (CCMP609) and Pavlova sp. (CCMP459) contained the unusual dihydroxysterols 24-methylpavlovol and 24-ethylpavlovol, which have been found only in members of the Pavlovales. Prymnesium parvum contained cholesterol without traces of other sterols. Compared to the other isolates, the quantity of sterols was extremely low in P. parvum.  相似文献   

2.
When Chlorella sorokiniana was grown in the presence of 4 ppm AY-9944 total sterol production was unaltered in comparison to control cultures. However, inhibition of sterol biosynthesis was shown by the accumulation of a number of sterols which were considered to be intermediates in sterol biosynthesis. The sterols which were found in treated cultures were identified as cyclolaudenol, 4α,14α-dimethyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 4α,14α-dimethyl -5α-ergosta-8,25-dien-3β-ol, 14α-methyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 24-methylpollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergost -8(14)-enol, 5α-ergost-8-enol, 5α-ergosta-8(14),22-dienol, 5α-ergosta-8,22-dienol, 5α-ergosta-8,14-dienol, and 5α-ergosta-7,22-dienol, in addition to the normally occurring sterols which are ergosterol, 5α-ergost-7-enol, and ergosta-5,7-dienol.The occurrence of these sterols in the treated culture indicates that AY-9944 is an effective inhibitor of the Δ8 → Δ7 isomerase and Δ14-reductase, and also inhibits introduction of the Δ22-double bond. The occurrence of 14α-dimethyl-5α-ergosta-8,25-dien-3β-ol and 14α-methyl-9β,19-cyclo-5α-ergost -25-en-3β-ol is reported for the first time in living organisms. The presence of 25-methylene sterols suggests that they, and not 24-methylene derivatives, are intermediates in the biosynthesis of sterols in C. sorokiniana.  相似文献   

3.
Analysis of sterols of Saccharomyces cerevisiae mutants N3, N15, N26, and N3H, defective in sterol biosynthesis, was performed. Strains N3, N15, and N26 were isolated from their mother strain, M10, by screening with nystatin (Nagai et al. (1980) Mie Med. J. 30, 215-224), and strain N3H was isolated from N3 as a doubly-mutated strain. The main sterols of N3, N15, N26, and N3H were ergosta-7,22-dienol, ergost-8-enol, cholesta-5,7,24-trienol, and ergosta-7,22,24(28)-trienol, respectively. The former three strains were characterized as defective in delta 5-desaturation, delta 8--delta 7 isomerization, and C-24 transmethylation. Strain N3H was found to be defective in delta 5-desaturation as well as in delta 24(28)-reduction. However, the defect of N26 and N3H was suggested to be leaky, since small amounts of ergosterol and ergosta-7,22-dienol were found in these mutants, respectively. In N15, an accumulation (2% in total sterols) of the compound likely to be hydroxylated sterol was found. By aerobic adaptation of these strains, the accumulation of these strains, the accumulations of ergosta-7,22-dienol (22 mg/g dry cells), ergosta-7,22,24(28)-trienol (24 mg), ergosta-8,24(28)-dienol (18 mg), and cholesta-8,24-dienol (22 mg) reached a maximum in N3, N3H, N15, and N26 after 20, 20, 30, and 30 h, respectively. These strains appear to be useful for making 14C-labeled and non-labeled preparations of the above sterols.  相似文献   

4.
Thraustochytrid strain ACEM 6063, rich in omega-3 polyunsaturated fatty acids, was cultured at 15°C and 20°C in high (>40%) and low (<5%) dissolved oxygen (DO), and at 25°C in low-DO media. Samples were taken 4, 2, and 0 days before each culture reached peak biomass (T−4, T−2, and Tp, respectively). Twenty sterols, 13 of which were identified, were detected. Predominant were cholest-5-en-3β-ol, 24-ethylcholesta-5,22E-dien-3β-ol, 24-methylcholesta-5,22E-dien-3β-ol, and 2 coeluting sterols, one of which was 24-ethylcholesta-5,7,22-trien-3β-ol. These 4 sterols comprised 50% to 90% of total sterols. Cultures grown at high DO had simpler sterol profiles than those grown at low DO. Only the 4 sterols mentioned above were present at more than 3% of total sterols in high-DO cultures. In low-DO cultures, up to 6 additional sterols were present at more than 3% of total sterols. Culture age, temperature, and DO influenced squalene and sterol content. Total sterols (as a proportion of total lipids) decreased with increasing culture age. If organisms such as ACEM 6063 are to be used for commercial production of lipid products for human consumption, both their sterol content and factors influencing sterol production need to be characterized thoroughly. Received January 8, 2001; accepted March 6, 2001.  相似文献   

5.
The desmethyl sterol composition of the oomycete Dictyuchus monosporus is unusual in that it is a mixture of 56.9 % Δ5-sterols and 42.6 % Δ7-sterols. The Δ5-sterols are cholesterol, 24 methylenecholesterol and fucosterol; the Δ7-sterols are cholest-7-enol, ergosta-7,24(28)-dienol and stigmasta-7,E-24(28)-dienol. Stigmasta-7,E-24(28)-dienol, is identified for the first time from natural sources. In addition, traces of lanosterol are present.  相似文献   

6.
David Nes W  Nichols SD 《Phytochemistry》2006,67(16):1716-1721
The Zygomycetes fungus Mortierella alpina was cultured to growth arrest to assess the phytosterol biosynthesis pathway in a less-advanced fungus. The mycelium was found to produce 13 sterols, but no ergosterol. The sterol fractions were purified to homogeneity by HPLC and their identifies determined by a combination of GC-MS and 1H NMR spectroscopy. The principal sterol of the mycelium was cholesta-5, 24-dienol (desmosterol) (83%), with lesser amounts of 24beta-methyl-cholesta-5,25(27)-dienol (codisterol) (2%), 24-methyldesmosterol (6%), 24(28)-methylene cholesterol (3%) and lanosterol (3%) and several other minor compounds (3%). The total sterol accounted for approximately 0.07% of the mycelial dry wt. Mycelium fed methionine-methyl-2H3 for 6 days, generated 3 2H-24-methyl(ene) sterols, [C28-2H2]24(28)-methylenecholesterol, [C28-2H3]24-methylcholesta-5,24-dienol and [C28-2H3]24beta-methyl-cholesta-5,25(27)-dienol. The formation of the 24-methyl sterols seems to be catalyzed by the direct methylation of a common Delta24-acceptor sterol thereby bypassing the intermediacy of an isomerization step for rearrangement of the Delta24(28)-bond to Delta25(25)-position as operates in Ascomycetes fungi and all plants.  相似文献   

7.
Two rare C30-sterols, (24E)-24-n-propylidenecholest-5-en-3β-ol and 24-n-propylcholest-5-en-3β-ol, and (24S)-24-ethylcholesta-5,22-dien- 3β-ol (stigmasterol) are the major sterols of Nematochrysopsis roscoffensis, a Chrysophyte of the Sarcinochrysidales order. This unique sterol composition is different from the sterol contents of other Chrysophytes and justifies the peculiar position of the Sarcinochrysidales, which are by some characteristics morphologically and biologically related to the Phaeophyceae. The presence of (24S)-24-methylcholesta-5,22-dien-3β-ol (24-epibrassicasterol) as a major sterol in Chrysotila lamellosa is in accordance with the few previous results obtained from other Prymnesiophyceae, although the presence of the other major sterol, (24R)-24-ethylcholesta-5,22-dien-3β-ol (poriferasterol) has never been reported in these algae.  相似文献   

8.
Giner JL  Wikfors GH 《Phytochemistry》2011,72(14-15):1896-1901
Sterol compositions for three diatom species, recently shown to contain sterols with side chains typically found in dinoflagellates, were determined by HPLC and 1H NMR spectroscopic analyses. The centric diatom Triceratium dubium (= Biddulphia sp., CCMP 147) contained the highest percentage of 23-methylated sterols (37.2% (24R)-23-methylergosta-5,22-dienol), whereas the pennate diatom Delphineis sp. (CCMP 1095) contained the cyclopropyl sterol gorgosterol, as well as the 27-norsterol occelasterol. The sterol composition of Ditylum brightwellii (CCMP 358) was the most complex, containing Δ0- and Δ7-sterols, in addition to the predominant Δ5-sterols. A pair of previously unknown sterols, stigmasta-5,24,28-trienol and stigmasta-24,28-dienol, were detected in D. brightwellii and their structures were determined by NMR spectroscopic analysis and by synthesis of the former sterol from saringosterol. Also detected in D. brightwellii was the previously unknown 23-methylcholesta-7,22-dienol.  相似文献   

9.
The sterol content of the marine sponge Crambe crambe has been determined. The major components of the mixture are cholest-7-en3β-ol, 24-methylcholesta-7,22-dien-3β-ol and cholesta-7,22-dien-3β-ol. Significative quantities of the rare 4α-methyl-5α-cholest-8-en3β-ol are also present.  相似文献   

10.
T Itoh  T Tamura  T Matsumoto 《Steroids》1977,30(3):425-433
Thirteen 4-desmethylsterols: cholesterol, 24-methylcholesterol, 24-ethylcholesterol, stigmasterol, 24-methylcholesta-5,24-dienol, 24-ethylcholesta-5,24-dienol, 28-isofucosterol, 24-methylenecholesterol, cholestanol, 24-methylcholestanol, 24-ethylcholestanol, cholest-7-enol and 24-ethylcholest-22-enol, were identified in the seeds of solanaceous plants. The distribution of these 4-demethylsterols in the seeds of eleven plants among seven genera of the Solanaceae family was determined.  相似文献   

11.
Sterols from free sterol and steryl ester fractions from Heterodera zeae and from total lipids of Zea mays roots were analyzed by gas-liquid chromatography (GLC) and by GLC-mass spectrometry. The major free sterols of H. zeae were 24-ethylcholesterol (54.4% of total free sterol), 24-ethylcholesta-5,22-dien-3β-ol (13.3%), 24-methylcholesterol (12.5%), and cholesterol (7.2%). The same four sterols comprised 34.6%, 7.2%, 30.3%, and 18.6%, respectively, of the esterified sterols of H. zeae. Corn root sterols included 46.6% 24-ethylcholesta-5,22-dien-3β-ol, 16.7% methylcholesterol, 16.4% cycloartenol, 12.7% 24-ethylcholesterol, and 0.5% cholesterol. The sterol 24-composition of H. zeae differed greatly from that of the only other cyst nematode previously investigated, Globodera solanacearum.  相似文献   

12.
The free sterols of the fungi Ganoderma applanatum, Ganoderma lucidum and Polyporus sulfureus were isolated and characterized by means of GC and GC/MS techniques. 24-Methylcholesta-7,22-dien-3β-ol was the main component of the sterol mixtures while 24-methylcholesta-5,7,22-trien-3β-ol ergosterol) and 24-methylcholest-7-en-3β-ol were also present although in lower amounts. P. sulfureus, besides the mentioned sterols, also contained 24 ethylcholestan-3β-ol.  相似文献   

13.
Lanosterol C-14 demethylase Erg11p of the yeast Saccharomyces cerevisiae catalyzes the enzymatic step following formation of lanosterol by the lanosterol synthase Erg7p in lipid particles (LP). Localization experiments employing microscopic inspection and cell fractionation revealed that Erg11p in contrast to Erg7p is associated with the endoplasmic reticulum (ER). An erg11Delta mutation in erg3Delta background, which is required to circumvent lethality of the erg11 defect, did not only change the sterol pattern but also the sterol distribution within the cell. Whereas in wild type the plasma membrane was highly enriched in ergosterol and LP harbored large amounts of sterol precursors in the form of steryl esters, sterol intermediates were more or less evenly distributed among organelles of erg11Delta erg3Delta. This distribution is not result of the erg3Delta background, because in the erg3Delta strain the major intermediate formed, ergosta-7,22-dienol, is also highly enriched in the plasma membrane similar to ergosterol in wild type. These results indicate that (i) exit of lanosterol from LP occurs independently of functional Erg11p, (ii) random supply of sterol intermediates to all organelles of erg11Delta erg3Delta appears to compensate for the lack of ergosterol in this mutant, and (iii) preferential sorting of ergosterol in wild type, but also of ergosta-7,22-dienol in erg3Delta, supplies sterol to the plasma membrane.  相似文献   

14.
The sterol compositions of 14 species of marine diatoms were determined by gas chromatography and gas chromatography-mass spectrometry. A variety of sterol profiles were found. The sterols 24-methylcholesta-5,22E-dien-3β-ol, cholest-5-en-3β-ol, and 24-methylcholesta-5,24(28)-dien-3β-ol, previously described as the most common sterols found in diatoms, were major sterols in only a few of the species. In light of this and other recent data, it is clear that these three sterols are not typical constituents of many diatom species. Most of the centric species examined had 24-methylcholesta-5,24(28)-dien-3β-ol and 24-methylcholest-5-en-3β-ol as two of their major sterols. The exception was Rhizosolenia setigera, which possessed cholesta-5,24-dien-3β-ol as its single major sterol. In contrast to the centric species, the pennate diatoms examined did not have any particular sterols common to most species. Minor levels ofΔ7-sterols, rarely found in large amounts in diatoms, were found in four species. C29sterols were found in many species; seven contained 24-ethylcholest-5-en-3β-ol and three contained 24-ethylcholesta-5,22E-dien-3β-ol, reinforcing previous suggestions that C29 sterols are not restricted to higher plants and macroalgae. 24-Ethylcholesta-5,22E-dien-3β-ol may prove to be useful for taxonomy of the genus Amphora and the order Thalassiophysales. A major sterol of Fragilaria pinnata was the uncommon algal sterol 23,24-dimethylcholesta-5,22E-dien-3β-ol. Cholesta-5,24-dien-3β-ol was the only sterol found in the culture of Nitzschia closterium. This differed from previous reports of 24-methylcholesta-5,22E-dien-3β-ol as the single major sterol in N. closterium. Two C28 sterols possessing an unusual side chain were found in Thalassi-onema nitzschioides, a C28:2 sterol (16%) and a C28:1 sterol in lower abundance (2.5%), which may be 23-methylcholesta-5,22E-dien-3β-ol and 23-methyl-5α-cholest-22E-en-3β-ol, respectively. The species Cylindrotheca fusiformis, T. nitzschioides, and Skeletonema sp. may be useful as direct sources of cholesterol in mariculture feeds due to their moderate to high content of this sterol.  相似文献   

15.
Four Δ5-sterols and six Δ7-sterols were isolated from the seed oil of Trichosanthes kirilowii and identified as campesterol, sitosterol, stigmasterol, Δ7-campesterol, Δ7-stigmasterol, Δ7,22-stigmastadienol, 24-ethylcholesta-5,25-diene-3β-ol, 24-ethylcholesta-7,24(25)-diene-3β-ol, 24-ethylcholesta-7,25-diene-3β-ol, and 24-ethylcholesta-7,22,25-trine-3β-ol.  相似文献   

16.
Four new 4α-methylsterols in the seeds of Solanaceae were identified as 31-norlanost-9(11)-enol, 24-methyl-31-norlanost-9(11)-enol, 4α,24-dimethylcholesta-7,24-dienol and 4α-methyl-24-ethylcholesta-7,24-dienol. The other 4α-methylsterols identified in the seeds were 31-norcycloartanol, 31-norcycloartenol, cycloeucalenol, 31-norlanost-8-enol, 31-norlanosterol, obtusifoliol, 4α,14α,24-trimethylcholesta-8,24-dienol, 4α-methylcholest-8-enol, lophenol, 24-methyllophenol, 24-ethyllophenol, gramisterol and citrostadienol. The distribution of these seventeen 4α-methyl- sterols in the seeds of eight species of the Solanaceae was determined.  相似文献   

17.
Recent studies have led to the identification of an unusual class of dihydroxysterols (steroidal diols termed “pavlovols”)in a few species of microalgae from the genus Pavlova (family Pavlovaceae, class Haptophyceae = Prymnesiophyceae). These compounds have an additional hydroxyl group at G-4 in the sterol A ring, which appears to be very rare in sterol biosynthetic pathways. The sterol compositions of many other haptophytes from different orders have been analyzed, but to date all have lacked pavlovols. We now report the occurrence of these compounds in Diacronema vlkianum Prauser and two strains of Pavlova pinguis Green. This is the first report of the lipid composition of these species. Both microalgae contained “24-methylpavlovol” (4α, 24-dimethyl-5α-cholestan-3β, 4β-diol), P. pinguis also contained “24-ethylpavlovol” (4α-methyl-24-ethyl-5α-cholestan-3β, 4β-diol), and D. vlkianum contained a diol identified from its mass spectrum as 4α, 24β-dimethyl-5α-cholest-22E-en-3β,4β-diol. Both species contained structurally analogous 4-desmethyl sterols and 4-methyl sterols, although there were major differences in the proportions in each series. The major 4-desmethyl sterol in both species was 24-ethylcholesta-5, 22E-dien-3β-ol and the major 4-methyl sterol was 4α-methyl-24-ethyl-5α-cholest-22E-en-3β-ol. The presence of pavlovols in P. pinguis, combined with earlier data, suggests that all Pavlova species might have this distinguishing lipid feature. However, their identtjication in D. vlkianum extends the occurrence of these compounds to another genus and shows that they are not unique to the genus Pavlova. However, they are probably restricted to species from the order Pavlov ales. The modes of biosynthesis and functions of pavlovols remain unknown.  相似文献   

18.
《Phytochemistry》1987,26(3):731-733
The sterols from eight species in seven genera of the Cactaceae are 24-alkyl-Δ5-sterols. In all eight species, Echinopsis tubiflora, Pereskia aculeata, Hylocereus undatus, Notocactus scopa, Epiphyllum sp., Schlumbergera bridgesii, Opuntia comonduensis and O. humifusa, the dominant sterol is sitosterol (24α-ethylcholest-5-en-3β-ol) at 66–87% of the total sterol composition with the 24ξ-methylcholest-5-en-3β-ol present at 8–33%. Stigmasterol (24α-ethylcholesta-5,22E-dien-3β-ol) is present at 2–8% of the total sterol in P. aculeata, H. undatus, N. scopa and Epiphyllum sp. whereas cholesterol (cholest-5-en-3β-ol) is present in six species at levels of <0.1–5.0%. Avenasterol (24-ethylcholesta-7,24(28)Z-dien-3/gb-ol) and sitostanol (24α-ethyl-5α-cholestan-3β-ol) are each present in two species.  相似文献   

19.
Treatment of wheat leaves with heptanoyl salicylic acid (HS) and trehalose at concentrations of 0.1 and 15 g l(-1), prior to fungal inoculation, resulted in 40% and 60% protection, respectively, against powdery mildew. The total lipid composition of Blumeria graminis f.sp. tritici (Bgt) conidia, the causal agent of wheat powdery mildew, was compared when produced on wheat leaves, respectively, untreated and treated with the two elicitors, HS and trehalose. An obvious effect was observed on lipid composition (sterol and fatty acid (FA)) of Bgt conidia produced on wheat leaves treated with HS. A total of 16 FA (C12-C24 saturated and unsaturated) as well as unusual methoxylated Fatty Acids (mFA) (3-methoxydocosanoic and 3-methoxytetracosanoic acids) were detected in the conidia. Medium chain FA were predominant in HS treated conidia (64.65%) while long chain fatty acids constituted the major compounds in untreated conidia (62%). The long chain/medium chain FA ratio decreased from 1.8 in the conidia produced on untreated leaves to 0.5 in the conidia obtained from HS treated leaves. When comparing the sterol composition of Bgt conidia produced on leaves treated with HS versus conidia obtained from untreated ones, very important changes within the two major classes can be seen. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and 24-methylcholesta-7,24-dien were reduced by about 82% whereas 24-ethylsterols, e.g., 24-ethylcholesterol and 24-ethylcholesta-5,22-dienol were increased by about 85%. The 24-methylsterols/24-ethylsterols ratio was reduced by ninefold in the conidia produced from HS treated leaves.  相似文献   

20.
Sterols composition of transformed carrot roots incubated in presence of increasing concentrations of fenpropimorph (0.02; 0.2; 2 mg l−1) and fenhexamid (0.02; 0.2; 2; 20 mg l−1), colonized or not by Glomus intraradices was determined. In mycorrhizal roots treated with fenpropimorph, normal Δ5-sterols were replaced by unusual compounds such as 9β,19-cyclopropylsterols (24-methylpollinastanol), Δ8,14-sterols (ergosta-8,14-dienol, stigmasta-8,14-dienol), Δ8-sterols (Δ8 sitosterol) and Δ7-sterols (ergosta-7,22-dienol). After application of fenpropimorph, a drastic reduction of the mycorrhizal root growth, root colonization and extraradical fungal development was observed. Application of fenhexamid did not modify sterol profiles and the total colonization of roots. But the arbuscule frequency of the fungal partner was significantly affected.Comparison of the effects caused by the tested fungicides indicates that the usual phytosterols may be involved in symbiosis development. Indeed, observed modifications of root sterols composition could explain the high fenpropimorph toxicity to the AM symbiosis. However, the absence of sterolic modifications in the roots treated with fenhexamid could account for its more limited impact on mycorrhization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号