首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of nickel salt on growth of the nickel-resistant wild type strain Alcaligenes eutrophus CH34, which harbours two plasmids, and on its partially or totally cured derivatives as well as of the wild type strain H16 was studied. Plasmid pMOL28-mediated nickel resistance turned out to be an inducible property. Full resistance is induced during growth in the presence of 0.03–3.0 mM NiCl2. Induction requires growth. While plasmid-free cells accumulate nickel at a high rate, the pMOL28-harbouring-induced cells accumulate only negligibly small amounts of nickel. It is concluded that pMOL28 mediates a protective mechanism preventing the cells to accumulate nickel ions intracellularly at toxic concentrations.  相似文献   

2.
Xin Wei Wang  Max Costa 《Biometals》1991,4(4):201-206
Summary Treatment of wild-type Balb/c-3T3 cells with NiCl2 orN 6,2-O-dibutyl-adenosine 3,5-monophosphate (Bt2-CAMP) resulted in a high degree and frequency of cellular elongation. Nickel-resistant Balb/c-3T3 cells (B200) treated with Bt2-CAMP elongated at the same exposure concentration as wild-type cells. In contrast, treatment of the nickel-resistant cells with both non-cytotoxic and cytotoxic doses of NiCl2 failed to induce elongation. Nickel-resistant cells had two-thirds of the total protein-phosphorylation activity of wild-type cells. Both cAMP and NiCl2 enhanced phosphorylation of specific proteins in intact wild-type cells as detected by32P autoradiography of these proteins separated on two-dimensional gels. A nickel-dependent phosphorylation of specific proteins is seen following NiCl2 treatment of wild-type cells but was not observed in B200 cells. In contrast, the pattern of Bt2-cAMP-stimulated protein phosphorylation was quite similar in both wild-type and nickel-resistant cells. Although it is unclear at present how nickel ions affect the cellular protein-phosphorylation system, these results suggested that targets controlling cellular elongation are sensitive to nickel, are altered in nickel-resistant cells and appear to involve protein phosphorylation. Further characterization of these targets may help in understanding the mechanisms of nickel carcinogenesis.  相似文献   

3.
DNA fragments harboring the nickel resistance determinants from bacteria isolated from anthropogenically polluted ecosystems in Europe and Zaire were compared with those harboring the nickel resistance determinants from bacteria isolated from naturally nickel-percolated soils from New Caledonia by DNA-DNA hybridization. The biotinylated DNA probes were derived from the previously described Alcaligenes eutrophus CH34, Alcaligenes xylosoxidans 31A, Alcaligenes denitrificans 4a-2, and Klebsiella oxytoca CCUG 15788 and four new nickel resistance-determining fragments cloned from strains isolated from soils under nickel-hyperaccumulating trees. Nine probes were hybridized with endonuclease-cleaved plasmid and total DNA samples from 56 nickel-resistant strains. Some of the New Caledonian strains were tentatively identified as Acinetobacter, Pseudomonas mendocina, Comamonas, Hafnia alvei, Burkholderia, Arthrobacter aurescens, and Arthrobacter ramosus strains. The DNA of most strains showed homologies to one or several of the following nickel resistance determinants: the cnr and ncc operons of the strains A. eutrophus CH34 and A. xylosoxidans 31A, respectively, the nre operon of strain 31A, and the nickel resistance determinants of K. oxytoca. On the basis of their hybridization reactions the nickel resistance determinants of the strains could be assigned to four groups: (i) cnr/ncc type, (ii) cnr/ncc/nre type, (iii) K. oxytoca type, and (iv) others. The majority of the strains were assigned to the known groups. Among the strains from Belgium and Zaire, exclusively the cnr/ncc and the cnr/ncc/nre types were found. Among the New Caledonian strains all four types were represented. Homologies to the nre operon were found only in combination with the cnr/ncc operon. The homologies to the cnr/ncc operon were the most abundant and were detected alone or together with homologies to the nre operon. Only the DNA of the strains isolated from soil in Scotland and the United States and that of five of the New Caledonian strains did not show any detectable homologies to any of our probes. The nickel resistance fragment isolated from Burkholderia strain 32W-2 was studied in some detail. This 15-kb BamHI fragment conferred resistance to 1 to 5 mM NiCl(inf2) to Escherichia coli and resistance to up to 25 mM NiCl(inf2) to A. eutrophus. It showed strong homologies to both the cnr/ncc operon and the nre operon and conferred strictly regulated (inducible) nickel resistance to A. eutrophus.  相似文献   

4.
Characterization of nickel-resistant bacteria isolated from serpentine soil   总被引:2,自引:0,他引:2  
In the present study, heterotrophic nickel-resistant bacteria were isolated and characterized from three different serpentine outcrops in central Italy populated by the nickel-hyperaccumulating plant Alyssum bertolonii . Bacteria were isolated from the rhizosphere of the plant and from soil portions at various distances from the plant. The proportion of nickel-resistant cfu was higher in proximity to the plant than in free soil. A total of 138 isolates was collected and grouped into 47 different operational taxonomic units (OTUs) by means of amplified ribosomal DNA restriction analysis (ARDRA) and into 25 heavy-metal resistant phenotypes. The phylogenetic position of strains belonging to 20 OTUs, representing more than the 70% of the total isolates, was determined by 16S rDNA sequencing. These analyses showed that the most represented genera in all three different outcrops were Pseudomonas and Streptomyces . Pseudomonas strains were found to be predominant in the plant rhizosphere, whereas Streptomyces strains were mainly present in the soil.  相似文献   

5.
A newly isolated aerobic hydrogen-oxidizing bacterium, Alcaligenes denitrificans strain 4a-2, differs from related autotrophic bacteria by containing only a single cytoplasmic, NAD-reducing hydrogenase, and by its high resistance to nickel ions, i.e. tolerance to 20 mM NiCl2. Strain 4a-2 harbors a single plasmid of about 250 kb. On helper-assisted mating of 4a-2 with Alcaligenes eutrophus strains H16,G29, and M85 nickelresistant transconjugants were selected; these did not contain the donor plasmid, however. All three transconjugants tolerated 3 to 10 mM NiCl2. The resistance was constitutively expressed. DNA/DNA hybridization showed homology with EcoRI-digested DNA of the wild type 4a-2 and transconjugants using a DNA probe containing nickel resistance genes of pMOL28. This indicated that the 4a-2 nickel resistance genes are located on the chromosome.  相似文献   

6.
Klebsiella oxytoca strain CCUG 15788, isolated from a mineral oil emulsion tank in Göteborg, Sweden, was found to be nickel-resistant (tolerating 10 mm NiCl2 in non-complexing mineral-gluconate media; inducible resistance). The nickel resistance determinants were transferred by helper-assisted conjugation to various strains of Escherichia coli and Citrobacter freundii and expressed to between 5 and 10 mm NiCl2. A 4.3 kb HindIII fragment was cloned from the genomic DNA of K. oxytoca. Ligated into the vector pSUP202, the fragment caused constitutive nickel resistance (of up to 3 or 10 mm Ni2+) in various E. coli strains. After cloning into the broad host range vector pVDZ'2 the fragment even expressed low nickel resistance in the transconjugant of Alcaligenes eutrophus AE104. With the 4.3 kb HindIII fragment as a biotinylated DNA probe it was shown by DNA-DNA hybridization that the nickel resistance determinant resides on the chromosome of K. oxytoca and not on its circular plasmid pKO1 (160 kb) or linear plasmid pKO2 (50 kb). Nickel resistance strongly correlated with the presence of the 4.3 kb HindIII fragment in the transconjugants. No homologies were detected when the nickel resistance determinants of other well-known nickel-resistant bacteria, such as A. eutrophus CH34 or A. denitrificans 4a-2, were used as target DNA. Among the 60 strains examined, positive signals only appeared with the 3.1 kb DNA fragment from A. xylosoxydans 31A and the genomic DNA of two enterobacterial strains (5-1 and 5–5) isolated from nickel-rich soil in New Caledonia.  相似文献   

7.
Two new nickel-resistant strains of Alcaligenes species were selected from a large number (about 400) of strains isolated from ecosystems polluted by heavy metals and were studied on the physiological and molecular level. Alcaligenes xylosoxydans 31A is a heterotrophic bacterium, and Alcaligenes eutrophus KTO2 is an autotrophic aerobic hydrogen-oxidizing bacterium. Both strains carry—among other plasmids—a megaplasmid determining resistance to 20 to 50 mM NiCl2 and 20 mM CoCl2 (when growing in defined Tris-buffered media). Megaplasmids pTOM8, pTOM9 from strain 31A, and pGOE2 from strain KTO2 confer nickel resistance to the same degree to transconjugants of all strains of A. eutrophus tested but were not transferred to Escherichia coli. However, DNA fragments carrying the nickel resistance genes, cloned into broad-hostrange vector pVDZ'2, confer resistance to A. eutrophus derivatives as well as E. coli. The DNA fragments of both bacteria, TBA8, TBA9, and GBA (14.5-kb BamHI fragments), appear to be identical. They share equal size, restriction maps, and strong DNA homology but are largely different from fragment HKI of nickel-cobalt resistance plasmid pMOL28 of A. eutrophus CH34.  相似文献   

8.
The degree of inhibition of semiconservative DNA replication induced by nickel chloride (NiCl2) was analyzed by radiolabeled-thymidine incorporation alone or with cesium chloride (CsCl) density gradient centrifugation. The onset and duration of this Ni2+-induced inhibition was time- and concentration- dependent, but the degree of inhibition was not. A maximal reduction in the rate of DNA synthesis was observed within the first hour of treatment with 2.5 mM NiCl2, which was the highest noncytotoxic concentration utilized. After six hours, 500 μM and 1 mM as well as 2.5 mM NiCl2 all produced the same 50% to 60% reduction in [3H]-thymidine incorporation into DNA. The inhibitory effect of nickel ions on DNA synthesis was reversible. The rate of DNA synthesis following a 500 μM or 1 mM NiCl2 treatment began to increase after washout of nickel, but a six-hour exposure of cells to 2.5 mM NiCl2 produced a sustained 50% to 60% suppression of DNA synthetic activity for at least 36 hours. At all concentrations of NiCl2 used in this study, some inhibition of DNA synthesis persisted for at least 48 hours, but by 72 hours after treatment, the rate of [3H]-thymidine incorporation was actually 10% above the control. Examination of autoradiographic slides of cells treated with 2.5 mM NiCl2 for six hours demonstrated a 60% reduction of silver grains, but there was no preferential reduction in the quantity of grains in the nucleolus or any other region. Cesium chloride density gradient analysis of the replication of nucleolar DNA in cells treated with 2.5 mM nickel supported the autoradiographic findings. The inhibitory effect of NiCl2 on DNA replication was prevented by the addition of magnesium chloride (MgCl2) to cells maintained in a simple salts/glucose medium (SGM). This effect did not appear to be due to an antagonism of the cellular uptake of nickel by Mg2+, since the maximally effective dose of Mg2+ reduced 63Ni2+ uptake by no more than 25% while the inhibition of replication was completely reversed.  相似文献   

9.
Serpentine soils of Andaman Islands, India characteristically contain high levels of nickel, cobalt and chromium and are colonized by indigenous nickel-hyperaccumulating plants. Attempts have been made to isolate and characterize nickel-resistant microorganisms from these hitherto unexplored naturally nickel-percolated soils. The majority of the nickel-resistant organisms showed a minimum inhibitory concentration (MIC) of Ni2+ ranging from 300 to 400 mg/l and about 3.4% of the total 89 isolates representing bacterial strains were able to grow at 400 mg/l Ni2+. The potent Ni2+-resistant strains AND305 and AND603 were tentatively identified as Pseudomonas spp. and strain AND408 as Bacillus sp. following detailed analysis of morphological and physio-biochemical characteristics. Growth kinetics of these Ni2+-resistant bacteria showed a prolonged lag phase in Ni2+-containing media, which extended with increasing nickel concentration. In addition to Ni2+, these isolates were also resistant to Co2+, Cd2+, Cr6+, Fe3+, Cu2+, Mg2+, Mn2+(50–200 mg/l) and Hg2+ (0.5–2.0 mg/l) and the multiple metal-resistance of the isolates were also associated with the resistance to antibiotics ampicillin, cycloserine and penicillin G.  相似文献   

10.
Comparative analysis of growth and composition of Atropa belladonna L. plants was performed after separate and combined additions of NaCl and NiCl2 to the nutrient medium. Plants were grown in water culture on modified Johnson solution for 8 weeks until the formation of the fifth leaf pair. Thereafter, NiCl2 was introduced at final concentrations of 100 and 150 μM into the medium either separately or in combination with 100 mM NaCl. After completing the 7-day treatment with Ni ions, the plants' weight and the content of water and photosynthetic pigments were determined. The content of Ni, free polyamines (putrescine, spermidine, spermine), and atropine was determined in plant roots and leaves, whereas the content of Fe, proline, and malondialdehyde (MDA) was examined in leaves only. The distribution of Ni in various tissues was inspected using the dimethylglyoxime method. The presence of NiCl2 in growth media diminished the increments in fresh weight of shoots and roots; lowered the content of water, pigments, and iron in leaves; and initiated chlorosis. The leaves of Ni-treated plants accumulated larger amounts of atropine, putrescine, proline, and MDA with respect to the control levels of these compounds. In contrast to the action of Ni alone, the combined application of NaCl and NiCl2 was followed by the increased content of water and pigments in leaves. The presence of NaCl in the medium restricted the entry of Ni into roots and diminished the levels of MDA and proline in leaves. After growing the plants in the presence of 100 and 150 μM NiCl2, nickel was located in the root outer cortex and the rhizoderm. In plants treated with 150 μM NiCl2, nickel was also observed in tissues of the central cylinder, mostly in the pericycle, phloem, and xylem. In plants grown in the presence of 150 μM NiCl2 and 100 mM NaCl, the decreased accumulation of nickel was noted in the tissues of the central cylinder in the root hair zone. Thus, the combined action of Ni and moderate salinity reduced nickel accumulation in roots and aboveground organs of A. belladonna plants. The reduced Ni content in plants mitigated the toxic effect of Ni present in the medium. This was manifested in stabilization of leaf water status, an increase in the content of photosynthetic pigments, and alleviation of oxidative stress, which was assessed from the content of low-molecular organic compounds exhibiting stress-protective and antioxidant action (proline, MDA, free polyamines, and atropine).  相似文献   

11.
12.
We selected three yeast strains that efficiently remove heavy metal ions from aqueous solution. We first screened yeasts that grew in the presence of 2 mM NiCl2 among our stock of wild yeasts, and then selected those that removed Ni most efficiently from aqueous solution. These strains also removed Cu and Zn from aqueous solution and were identified as Candida species. Ni uptake was efficient at pH between 4.0 and 7.0, but less efficient at pH below 3.0. The amount of Ni taken up by the yeast cells was proportional to the initial concentration of NiCl2 below about 4 mM Ni. The cells retained the abilities to remove Ni after treatment with 10 mM EDTA or 1 M HCl for repeated usage, or after heat treatment. Received: 16 December 1996 / Received last revision: 15 April 1997 / Accepted: 20 May 1997  相似文献   

13.
P. Petrou 《Plant biosystems》2013,147(3):522-533
Abstract

The present study was carried out in abandoned fields in central Cyprus. The main objective was to examine the impact of the regeneration environment on the establishment and survival of Pinus brutia seedlings. Sixty-four permanent plots of 16 m2 were randomly established in two distinct sites. Four regeneration environments were recorded: (a) bare soil under the crown of a P. brutia tree, (b) soil under the canopy of a P. brutia tree and low shrubs, (c) bare soil in open areas, and (d) soil under the canopy of low shrubs in open areas. All P. brutia seedlings were classified in categories according to their regeneration environment. In all plots, the density of the P. brutia seedlings was measured in three different seasons (spring, summer, autumn). Soil temperatures were recorded, samples of surface soil were taken and the percentage of soil organic matter was measured. The main conclusions drawn from this research were the following: (1) the mature P. brutia trees and low shrubs facilitate the establishment and especially the survival of P. brutia seedlings, as all seedlings in bare vegetation ground had died by the end of the growing season, and (2) the importance of facilitation increases as abiotic stress rises.  相似文献   

14.
Cytometric and ultrastructural studies on 24 hr cultures of intact, 1.0 mM H5I06, and 0.1 mM SeO2-oxidized HuT-78 lymphoblasts were performed after their direct, 30 min interaction with 1.0 mM NiCl2. Except for moderately depressed cell viability, divalent nickel did not alter the progression of intact and oxidized target cells through the phases of the cell cycle.Although the plasma membrane remained structurally intact, marked distortion of mitochondria structure and increased osmiophilia were an invariable attribute of all nickel-pulsed cells. Moreover, numerous electron-opaque, intracellular depositions were detected in SeO2-oxidized, nickel-pulsed cells. It is concluded that the initial state of plasma membrane, and the interaction of nickel with other trace elements, have jointly determined the response of HuT-78 cells to brief and direct, divalent nickel pulses.  相似文献   

15.
Hafnia alvei 5-5, isolated from a soil-litter mixture underneath the canopy of the nickel-hyperaccumulating tree Sebertia acuminata (Sapotaceae) in New Caledonia, was found to be resistant to 30 mM Ni2+ or 2 mM Co2+. The 70-kb plasmid, pEJH 501, was transferred by conjugation to Escherichia coli, Serratia marcescens, and Klebsiella oxytoca. Transconjugant strains expressed inducible nickel resistance to between 5 and 17 mM Ni2+, and cobalt resistance to 2 mM Co2+. A 4.8-kb SalEcoRI fragment containing the nickel resistance determinant was subcloned, and the hybrid plasmid was found to confer a moderate level of resistance to nickel (7 mM Ni2+) even to E. coli. The expression of nickel resistance was inducible by exposure to nickel chloride at a concentration as low as 0.5 mM Ni2+. By random TnphoA′-1 insertion mutagenesis, the fragment was shown to have structural genes as well as regulatory regions for nickel resistance. Southern hybridization studies showed that the nickel-resistance determinant from pEJH501 of H. alvei 5-5 was homologous to that of pTOM9 from Alcaligenes xylosoxydans 31A. Electronic Publication  相似文献   

16.
Summary This review describes nickel toxicity and nickel resistance mechanisms in fungi. Nickel toxicity in fungi is influenced by environmental factors such as pH, temperature and the existence of organic matter and other ions. We describe resistance mechanisms in nickel-resistant mutants of yeasts and filamentous fungi which were obtained by exposure to a mutagen or by successive culture in media containing increasing concentrations of nickel ion. Nickel resistance may involve: (1) inactivation of nickel toxicity by the production of extracellular nickel-chelating substances such as glutathione; (2) reduced nickel accumulation, probably by modification of a magnesium transport system; (3) sequestration of nickel into a vacuole associated with free histidine and involving Ni-insensitivity of vacuolar membrane H+-ATPase.  相似文献   

17.
Nickel compounds are associated with lung and skin cancer incidence increase and accumulation of nickel in the body contributes to carcinogenesis. Upregulation of certain integrins in the primary tumor is associated with cancer metastasis and poor prognosis. However, the molecular mechanisms of nickel-induced cancer metastasis are still unclear. The purpose of the present study was to investigate the effects of nickel chloride (NiCl2) on the progression of cancer during metastasis. The results of showed that NiCl2 induces the expression of integrin β3 mRNA and protein in a dose- and time-dependent manner. Inhibition of integrin αvβ3 activation by ITGB3 ligand mimetics and GR144053, as well as downregulation of ITGB3 by lentiviral shRNA gene silencing, diminished NiCl2-induced secretion of vascular endothelial growth factor-a (VEGF-a). Furthermore, pretreatment with type I TGF-β receptor inhibitor, SB525334, suppressed the expression of ITGB3 at cell surface and secretion of VEGF-a in NiCl2-treated cells. In conclusion, NiCl2 induces the expression of ITGB3 through TGF-β signaling activation, followed by increasing VEGF-a secretion, revealing a novel role for ITGB3 in nickel compound-induced cancer metastasis and tumor angiogenesis.  相似文献   

18.
Abstract

Conformational studies on poly d(CGCGCGTTAATT) in solution by circular dichroism spectroscopy are reported. The polynucleotide exhibits B conformation in sodium chloride solution and on addition of NiCl2 a B-Z transition is observed. NiCl2 titrations carried out in the presence of 5M NaCl show a midpoint of transition at 2.25 mM NiCl2 and a complete (maximum conversion to Z form) transition at 16 mM NiCl2. In 60% alcohol the polynucleotide remains in B conformation. The polynucleotide isomerizes into ψ and A conformations in the presence of spermidine and spermine respectively. The thermodynamic parameters calculated from the melting profiles using a two state model show that the polynucleotide is almost equally stable in its B and Z conformations.  相似文献   

19.
The soluble NAD-dependent hydrogenase (hydrogen-NAD oxidoreductase, EC 1.12.1.2), consisting of four non-identical subunits, was isolated from Alcaligenes eutrophus H16 and from Nocardia opaca 1b and analyzed by a HPLC gel permeation technique and electron microscopy. The tetrameric enzyme particles from both origins, as determined from negatively stained electron microscopic samples, were found to be elongated and very similar in shape and size. The A. eutrophus enzyme was measured in more detail. It exhibited dimensions of 12.7 nm by 5.5 nm (axial ratio 2.3:1). Dissociation into smaller particles and unspecific aggregation combined with partial inactivation were observed in the presence of the inhibitor NADH. Kept in buffer without added nickel, the enzyme was partially dissociated. Reassociation of tetramers without restored enzyme activity was achieved by addition of 0.5 mM NiCl2. A working model for the structural organization of the tetrameric enzyme particle is presented.  相似文献   

20.
Factor F430 is a yellow compound of unknown structure present in methanogenic bacteria. It has recently been shown to contain nickel. In this communication the influence of the nickel concentration in the growth medium on the factor F430 content of Methanobacterium thermoautotrophicum and on the nickel content of factor F430 was studied. It was found: (1) The content of factor F430 in the cells was strongly dependent on the nickel concentration of the growth medium. Cells grown on media with 2.5 M NiCl2 contained 28 times as much factor F430 per g as those grown on media with 0.075 M NiCl2; (2) factor F430 was synthesized in nickel deprived cells only upon the addition of nickel Nickel uptake paralleled factor F430 synthesis; (3) independent of the nickel concentration in the growth medium, the extinction coefficient at 430 nm of factor F430 per mol nickel was always near 22,500 cm-1 (mol Ni)-1. These findings indicate that nickel is an essential component of factor F430.Dedicated to Professor Otto Kandler on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号