首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
ADP-glucose phosphorylase [adenosine diphosphate glucose: orthophosphate adenyl- yltransferase; Dankert et ah, Biochim. Biophys. Acta, 81, 78 (1964)] was found to be widely distributed in plant tissues. The enzyme was purified 570-fold in a 24% yield from cell- free extract of growing tubers of potato (Solanum tuberosum L.). The following reaction catalyzed by the purified enzyme was found to proceed stoichiometrically. ADP-glucose +P1→ADP+glucose-1-P

Maximal activity was observed at pH 8. The enzyme was the most stable at pH 7, showing 50% loss of its original activity after 50 min heating at 57°C. The following kinetic parameters were obtained: activation energy, 11.1 kcal/mole; Km (P1), 2.5 mm; Km (ADP-glucose), 0.05 mm. The enzyme did not act on GDP-mannose, GDP-glucose and UDP-glucose. Neither activator nor inhibitor was found among various phosphorylated metabolites tested. The enzyme was inhibited by metal-binding reagents, EDTA and o-phenanthroline. None of the metal ions tested was found to recover the activity of chelator-treated enzyme.  相似文献   

2.
The nucleotides present in the cambial tissue (primary wall tissue) and in the not yet fully differentiated secondary xylem (secondary wall tissue) of Larix decidua Mill. were extracted and characterized. The method of extraction best suited to the material was investigated and the problems involved in desalting of extracts and their effect on the final nucleotide pattern obtained are discussed. UDP-glucose was found to be the most important sugar nucleotide isolated from both cambial and young xylem tissue. UDP-galactose, UDP-arabinose, UDP-xylose, UDP-fructose, GDP-glucose, GDP-galactose, GDP-mannose, ADP-glucose, ADP-galactose, ADP-fructose, ADP-ribose and ADP-ribose phosphate (the last two compounds are the acid breakdown products of NADH and NADPH respectively) were also found in both extracts. UDP-galacturonic acid was identified only in the extract of the primary wall material. Several nucleotide oligosaccharides were obtained from both the extract of cambial tissue and that of the young xylem.  相似文献   

3.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   

4.
The trehalose-P synthase was purified to near homogeneity fromthe cytoplasmic fraction of Mycobacterium smegmatis. At thefinal stage of purification, the enzyme preparation showed onemajor band of 59 kDa on SDS gels. The 59 kDa band became labeledwith N3-UDP[32P]-glucose, and this labeling was inhibited ina concentration-dependent manner by either unlabeled UDP-glucoseor GDP-glucose. The native enzyme also had a molecular weightof about 60 kDa by gel filtration, indicating that the activeenzyme is a monomer. The 59 kDa protein was subjected to endoproteinaseLys-C digestion, and three peptides isolated by HPLC were sequenced.The sequences of 56 amino acids in these three peptides showed60% identity to the trehalose-P synthases of Saccharomyces cerevesiaeand Schizosaccharomyces pombe. The purified mycobacterial enzymecatalyzed the synthesis of trehalose-P from glucose-6-P anda variety of nucleoside diphosphate glucose derivatives, dependingon whether a polyanion was absent or present. Thus, UDP-glucoseand GDP-glucose were the best glucosyl donors, but maximum activitywith UDP-glucose required the presence of a polyanion such asheparin, whereas activity with GDP-glucose was relatively independentof polyanion. The presence of heparin in the incubation mixtureincreased the affinity of the enzyme for UDP-glucose by a factorof 100, or more. However, the affinity for GDP-glucose was onlytwofold better in the presence of heparin. The purified synthasealso utilized ADP-glucose and CDP-glucose, but the Km for theseglucosyl donors was quite high even in the presence of polyanion.The effect of heparin on UDP-glucose activity was dose-dependentand maximum at about 1–2 µ;g of heparin/incubation.However, the size of the heparin molecule (i.e., the numberof monosaccharide residues) was critical for activation, andonly those heparins with 18 or more monosaccharide units wereeffective in stimulating activity. trehalose polyanions mycobacteria GDP-glucose heparin  相似文献   

5.
The nucleotides and the activities of both sucrose synthetase and granular starch synthetase in the konjak corm (Amorphophallus konjac C. Koch) have been investigated as a preliminary experiment on konjak mannan biosynthesis. On chromatographic separation on anion exchange resin and paper of compounds present in the acid ethanol extract from the corms, ascorbic acid, AMP, ADP, ATP, ADP-glucose, UTP, UDP-glucose, GTP, and GDP-mannose were isolated and tentatively identified. An unidentified nucleotide was also isolated.

Of the three nucleotide sugars, UDP-glucose was the most plentiful, while ADP-glucose was the least. The sucrose synthetase in konjak corms was as active as that in other plants. These observations suggest that the mechanism involved in sucrose cleavage in konjak corms is the same as that in other plants, such as sweet potato roots. Starch synthetase bound to starch granules in konjak corms was also found to be active when ADP-glucose was used as glucose donor. But UDP-glucose could not be substituted for ADP-glucose.

Based on these observations the mechanism of konjak mannan biosynthesis is discussed.  相似文献   

6.
The trehalose-phosphate synthase (TPS) of Mycobacterium smegmatis was previously purified to apparent homogeneity and several peptides from the 58 kDa protein were sequenced. Based on that sequence information, the gene for TPS was identified in the Mycobacterium tuberculosis genome, and the gene was cloned and expressed in Escherichia coli with a (His)6 tag at the amino terminus. The TPS was expressed in good yield and as active enzyme, and was purified on a metal ion column to give a single band of approximately 58 kDa on SDS/PAGE. Approximately 1.3 mg of purified TPS were obtained from a 1-L culture of E. coli ( approximately 2.3 g cell paste). The purified recombinant enzyme showed a single band of approximately 58 kDa on SDS/PAGE, but a molecular mass of approximately 220 kDa by gel filtration, indicating that the active TPS is probably a tetrameric protein. Like the enzyme originally purified from M. smegmatis, the recombinant enzyme is an unusual glycosyltransferase as it can utilize any of the nucleoside diphosphate glucose derivatives as glucosyl donors, i.e. ADP-glucose, CDP-glucose, GDP-glucose, TDP-glucose and UDP-glucose, with ADP-glucose, GDP-glucose and UDP-glucose being the preferred substrates. These studies prove conclusively that the mycobacterial TPS is indeed responsible for catalyzing the synthesis of trehalose-P from any of the nucleoside diphosphate glucose derivatives. Although the original enzyme from M. smegmatis was greatly stimulated in its utilization of UDP-glucose by polyanions such as heparin, the recombinant enzyme was stimulated only modestly by heparin. The Km for UDP-glucose as the glucosyl donor was approximately 18 mm, and that for GDP-glucose was approximately 16 mm. The enzyme was specific for glucose-6-P as the glucosyl acceptor, and the Km for this substrate was approximately 7 mm when UDP-glucose was the glucosyl donor and approximately 4 mm with GDP-glucose. TPS did not show an absolute requirement for divalent cations, but activity was increased about twofold by 10 mm Mn2+. This recombinant system will be useful for obtaining sufficient amounts of protein for structural studies. TPS should be a valuable target site for chemotherapeutic intervention in tuberculosis.  相似文献   

7.
Changes in ADP-glucose and UDP-glucose pyrophosphorylase activities were followed during tuber development of Solanum tuberosum and prolonged storage at 4 and 11 C. Potato tuberization was accompanied by a sharp increase in starch synthesis simultaneous with a marked rise in ADP-glucose pyrophosphorylase activity. When tubers reached an average diameter of 1 centimeter (0.5 gram average tuber weight) and had already established 58% starch on a dry weight basis, ADP-glucose pyrophosphorylase increased 16- to 24-fold over its activity seen in low starch containing stolon tissue. During this same period UDP-glucose pyrophosphorylase increased approximately 2- to 3-fold. Although participation of UDP-glucose in starch formation can not be neglected, it is suggested that the onset of rapid non-photosynthetic potato tuber starch biosynthesis may be closely related to the simultaneous increase in ADP-glucose pyrophosphorylase activity.  相似文献   

8.
9.
Zea CJ  Pohl NL 《Biopolymers》2005,79(2):106-113
The glycogen synthase found in Pyrococcus furiosus is a hyperthermophilic biocatalyst that transfers the glucose portion of nucleotide-diphosphoglucose onto a growing carbohydrate biopolymer chain at 80 degrees C. In contrast to the mesophilic rabbit muscle glycogen synthase, the biocatalyst from P. furiosus possesses unusually broad nucleotide tolerance. The enzyme accepts all four common glucose-containing nucleotide-diphosphosugars: ADP-glucose, GDP-glucose, dTDP-glucose, and UDP-glucose. Using an electrospray ionization-mass spectroscopy (ESI-MS) assay, we determined the K(M) and Vmax for GDP-glucose to be 3.9 +/- 0.6 mM and 0.243 +/- 0.009 mM/min, and for dTDP-glucose to be 4.0 +/- 0.5 mM and 0.216 +/- 0.008 mM/min. A related nucleotide sugar, UDP-galactose, was not a reactive substrate, but was instead a competitive inhibitor with a Ki of 17 +/- 2 mM. The glycogen synthase from P. furiosus was shown not to have phosphorylase activity. The DeltaDeltaG of substrate binding was compared between the mesophilic rabbit muscle and the hyperthermophilic P. furiosus glycogen synthase to dissect any differences in sugar nucleotide recognition strategies at elevated temperatures. Both biocatalysts were shown to gain most of their substrate affinity through electrostatic interactions between the enzyme and the alpha-phosphate.  相似文献   

10.
Cell wall polysaccharides are synthesized from sugar-nucleotides, e.g. uridine 5'-diphosphoglucose (UDP-Glc), but the metabolic pathways that produce sugar-nucleotides in plants remain controversial. To help distinguish between potentially 'competing' pathways, we have developed a novel dual-radiolabelling strategy that generates a remarkably wide range of 3H:14C ratios among the various proposed precursors. Arabidopsis cell cultures were fed traces of D-[1-(3)H]galactose and a 14C-labelled hexose (e.g. D-[U-14C]fructose) in the presence of an approximately 10(4)-fold excess of non-radioactive carbon source. Six interconvertible 'core intermediates', galactose 1-phosphate <--> UDP-galactose <--> UDP-glucose <--> glucose 1-phosphate <--> glucose 6-phosphate <--> fructose 6-phosphate, showed a large decrease in 3H:14C ratio along this pathway from left to right. The isotope ratio of a polysaccharide-bound sugar residue indicates from which of the six core intermediates its sugar-nucleotide donor substrate stemmed. Polymer-bound galacturonate, xylose, arabinose and apiose residues (all produced via UDP-glucuronate) stemmed from UDP-glucose, not glucose 6-phosphate; therefore, UDP-glucuronate arose predominantly by the action of UDP-glucose dehydrogenase rather than through the postulated competing pathway leading from glucose 6-phosphate via myo-inositol. The data also indicate that UDP-galacturonate was not formed by a hypothetical UDP-galactose dehydrogenase. Polymer-bound mannose and fucose residues stemmed from fructose 6-phosphate, not glucose 1-phosphate; therefore GDP-mannose (guanosine 5'-diphosphomannose) arose predominantly by a pathway involving phosphomannose isomerase (via mannose phosphates) rather than through a postulated competing pathway involving GDP-glucose epimerization. Curiously, the ribose residues of RNA did not stem directly from hexose 6-phosphates, but predominantly from UDP-glucose; an alternative to the textbook pentose-phosphate pathway therefore predominates in plants.  相似文献   

11.
Disrupted potato starch granules obtained in the presence of 8 M urea were shown to increase [14C] glucose incorporation from labeled ADP-glucose or UDP-glucose into starch, as compared to intact grains. Labeled glucose or maltose units were found to be incorporated through a linkage that produced cyclic phosphate esters upon mild alkaline treatment and was sensitive to hydrolysis at pH 2.0. Both properties of this linkage strongly resembled those of the pyrophosphate bond of ADP-glucose or UDP-glucose.  相似文献   

12.
Metabolism of glucose by unicellular blue-green algae   总被引:32,自引:0,他引:32  
Summary A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.Abbreviations A (U)DPG ADP-glucose or UDP-glucose - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - G(int.) intracellular glucose - F-6-P fructose-6-phosphate - 6-PG 6-phosphogluconate - Ru-5-P ribulose-5-phosphate - RUDP ribulose-1,5-diphosphate - PGA 3-phosphoglycerate - GAP glyceraldehyde-3-phosphate  相似文献   

13.
With a view to investigating the role of the enzyme pyrophosphate-fructose-6-phosphate-1-phosphotransferase (PFP) in sucrose breakdown in developing endosperm of wheat grain, the activity of PFP and related enzymes such as phosphofructokinase (PFK), fructose-6-bisphosphatase (FBPase), fructose-6-phosphate-2-kinase (PFK-2) and fructose-2,6-bisphosphatase (F2, 6-P2ase) and the contents of the various intermediates of the pathway serving either the substrate or the effectors of these enzymes such as glu-6-P,glu-1-P,fru-6-P,fru-1,6-P2,DHAP,G3P, UDP-glucose, ADP-glucose, Pi,PPi and fru-2,6-P2 have been determined at 5 days intervals starting from day-5 after anthesis until day-40 after anthesis. These enzymes except PFK-2 had their peak activity at day-25 after anthesis. The activity of PFP was several fold higher than that of PFK at each stage of grain development. PFK-2 exhibited the lowest activity. The various intermediates again had their maximum concentration either at day-20 or day-25 after anthesis. Among hexose phosphates studied, glu-6-P was present in highest concentration at each stage of grain development. The level of Pi was much higher than those of PPi and fru-2,6-P2. Similarly, concentration of UDP-glucose was higher than that of ADP-glucose. Based on these results, it is proposed that the major role of the enzyme PFP in developing wheat grain is to provide PPi for sucrose breakdown via sucrose synthase.  相似文献   

14.
The translocation of UDP-glucose and GDP-mannose from an external to a luminal compartment has been examined in rat liver vesicles derived from the rough endoplasmic reticulum (RER). RER vesicles with the same topographical orientation as in vivo were incubated with a mixture of [3H]UDP-glucose and UDP-[14C]glucose to demonstrate that the intact sugar nucleotide was translocated into the lumen of the vesicles. The translocation of UDP-glucose was dependent on temperature and was saturable at high concentrations of the sugar nucleotide. The transfer of glucose to endogenous acceptors was dependent on the translocation of UDP-glucose into the lumen of the RER since leaky vesicles resulted in both a decrease in transport and transfer of glucose to endogenous acceptors. Preliminary results suggest that the mechanism of UDP-glucose transport into RER-derived vesicles is via a coupled exchange with luminal UMP. Using the same experimental approach to detect translocation of UDP-glucose into the lumen of RER vesicles, we were unable to detect transport of GDP-mannose. Incubation of leaky vesicles with GDP-mannose resulted in stimulation of the amount of mannose transferred to endogenous acceptors, in marked contrast to that observed for UDP-glucose and UDP-N-acetylglucosamine. These results suggest that whereas UDP-glucose is translocated across the RER membrane in vitro, GDP-mannose is not transported. In addition, these results tentatively suggest that there is asymmetric synthesis of the lipid-linked oligosaccharides within the membrane of the RER.  相似文献   

15.
Gibberellic acid (GA) stimulated both the elongation of Avena sativa stem segments and increased synthesis of cell wall material. The effects of GA on glucose metabolism, as related to cell wall synthesis, have been investigated in order to find specific events regulated by GA. GA caused a decline in the levels of glucose, glucose 6-phosphate, and fructose 6-phosphate if exogenous sugar was not supplied to the segments, whereas the hormone caused no change in the levels of glucose 6-phosphate, fructose 6-phosphate, UDP-glucose, or the adenylate energy charge if the segments were incubated in 0.1 m glucose. No GA-induced change could be demonstrated in the activities of hexokinase, phosphoglucomutase, UDP-glucose pyrophosphorylase, or polysaccharide synthetases using UDP-glucose, UDP-galactose, UDP-xylose, and UDP-arabinose as substrates. GA stimulated the activity of GDP-glucose-dependent β-glucan synthetase by 2- to 4-fold over the control. When glucan synthetase was assayed using UDP-glucose as substrate, only β-1,3-linked glucan was synthesized in vitro, whereas with GDP-glucose, only β-1,4-linked glucan was synthesized. These results suggest that one part of the mechanism by which GA stimulates cell wall synthesis concurrently with elongation in Avena stem segments may be through a stimulation of cell wall polysaccharide synthetase activity.  相似文献   

16.
The glucose 1-phosphate uridylyltransferase (GalU) is absolutely required for the biosynthesis of capsular polysaccharide, the sine qua non virulence factor of Streptococcus pneumoniae. The pneumococcal GalU protein was overexpressed in Escherichia coli, and purified. GalU showed a pI of 4.23, and catalyzed the reversible formation of UDP-glucose and pyrophosphate from UTP and glucose 1-phosphate with Km values of 0.4 mM for UDP-glucose, 0.26 mM for pyrophosphate, 0.19 mM for glucose 1-phosphate, and 0.24 mM for UTP. GalU has an optimum pH of 8–8.5, and requires Mg2+ for activity. Neither ADP-glucose nor TDP-glucose is utilized as substrates in vitro. The purification of GalU represents a fundamental step to provide insights on drug design to control the biosynthesis of the main pneumococcal virulence factor.  相似文献   

17.
Trehalose 6-phosphate synthase was solubilized from young sorocarps of the cellular slime mold, Dictyostelium discoideum, by a freeze-thaw cycle and was subsequently purified about 160-fold using streptomycin sulfate precipitation, (NH4)2SO4 fractionation, DEAE-cellulose chromatography, heat treatment in the presence of heparin, and molecular sieve chromatography on columns of Bio-Gel A-1.5m. The purified enzyme was maximally active at pH 6.5, showed an absolute specificity for glucose 6-phosphate as glucosyl acceptor and a relative specificity for the glucosyl donor in the order: UDP-glucose, GDP-glucose, and ADP-glucose. Although heparin and chondroitin sulfate activated the synthase, the order of glucosyl donor specificity was not affected. Other activators of trehalose 6-phosphate synthase were KCL, Mg2+, and EDTA, while detergents had little effect. Although synthase activity was reduced 60 to 80% upon the omission of Mg2+ from the assay mixture, an absolute dependency for Mg2+ could not be demonstrated. Evaluation of the apparent Km values for partially purified synthase preparations demonstrated that for each of the synthase substrates, the Line weaver-Burk plots displayed complex bimodal kinetics. Estimation of the Michaelis constants after extrapolation of the straight line portions of these plots yielded values of (a) 0.2 and 3.2 mm glucose 6-phosphate and (b) 0.5 and 2.2 mm UDP-glucose. Comparison of the latter parameters with the cellular levels of UDP-glucose and glucose 6-phosphate in Dictyostelium suggests that if the observed bimodal kinetics are the consequence of multiple kinetically distinct forms of the synthase, the activation of trehalose synthesis during slime mold culmination could provide a rationale for the presence of these isozymes.  相似文献   

18.
The utilization potential, in terms of agar production, of the invasive alga, Gracilaria vermiculophylla, collected at Ria de Aveiro, northwestern Portugal was investigated. The agar yield ranged from 15% to 33%, with pre-extraction treatment with alkali generally increasing the yield. The gel quality (gel strength and apparent Young’s modulus) was best (>600 g cm?2 and >1,000 kPa, respectively) when alkali treatment with 6% NaOH for 3.5 h was performed. At these pretreatment conditions, the effect of extraction time was also investigated and highest yield and best gel quality were obtained with a 2 h extraction time. By employing these extraction conditions, G. vermiculophylla can be a source of industrial food-grade agar. The structure of agar from G. vermiculophylla was determined through chemical techniques and FTIR and NMR spectrometry. It is mainly composed of alternating 3-linked d-galactose and 4-linked 3,6-anhydro-l-galactose, with methyl substitution occurring at 16–19 mol% of C-6 in 3-linked units and 2–3 mol% of C-2 in 4-linked units. A minor sulfation on C-4 of 3-linked units was also detected; while precursor units (6-sulfated 4-linked galactosyl moieties) were found in the native extract.  相似文献   

19.
Sucrose-phosphate synthetase is detectable only in intact chloroplast preparations of Phaseolus aureus. In contrast, sucrose synthetase and uridine diphosphate glucose (UDP-glucose) pyrophosphorylase activities are low in extracts of photosynthetic tissues of P. aureus but are high in extracts of nonphotosynthetic tissues. Activities for ADP-, dTDP-, CDP-, and GDP-glucose pyrophosphorylases are generally higher in extracts of photosynthetic tissues of P. aureus than in extracts of nonphotosynthetic tissues. The high levels of sucrose synthetase and of UDP-glucose pyrophosphorylase found in dark-grown hypocotyls begin to decline about 4 hours after exposure to light at a rate of 50% every 3 hours.  相似文献   

20.
Previous studies have identified two tissue- and cell-specific, yet functionally redundant, sucrose synthase (SuSy) genes, Sh1 and Sus1, which encode biochemically similar isozymes, SH1 and SUS1 (previously referred to as SS1 and SS2, respectively). Here we report evidence for a third SuSy gene in maize, Sus3, which is more similar to dicot than to monocot SuSys. RNA and/or protein blot analyses on developing kernels and other tissues show evidence of expression of Sus3, although at the lowest steady-state levels of the three SuSy gene products and without a unique pattern of tissue specificity. Immunoblots of sh1sus1-1 embryos that are either lacking or deficient for the embryo-specific SUS1 protein have shown a protein band which we attribute to the Sus3 gene, and may contribute to the residual enzyme activity seen in embryos of the double mutant. We also studied developing seeds of the double mutant sh1sus1-1, which is missing 99.5% of SuSy enzyme activity, for evidence of co-regulation of several genes of sugar metabolism. We found a significant reduction in the steady-state levels of Miniature-1 encoded cell wall invertase2, and Sucrose transporter (Sut) mRNAs in the double mutant, relative to the lineage-related sh1Sus1 and sh1Sus1 kernels. Down-regulation of the Mn1 gene was also reflected in significant reductions in cell wall invertase activity. Co-regulatory changes were not seen in the expression of Sucrose phosphate synthase, UDP-glucose pyrophosphorylase, and ADP-glucose pyrophosphorylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号