首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalase activity increased in Peridinium gatunense (formerly P. cinctum fa. westii) cells during the decline of the seasonal spring bloom period in Lake Kinneret. This was correlated with the low ambient total CO2 concentration. The relationship was confirmed in laboratory experiments where maximum catalase activity occurred under an atmosphere composed of 30% O2 and 0.003% CO2. Conversely, high CO2 concentrations inhibited catalase activity. The rise in catalase activity was not directly due to increasing environmental pH, as in vitro and in vivo measurements showed a characteristic broad pH curve with a constant activity from pH 6–10 for catalase. Photoinhibition of catalase occurred above 250 μmol photons · m?2· s?1. However, at high photoinactivating irradiances, photoinhibition was ameliorated under high pO2/pCO2. Such conditions prevail in the Kinneret at the end of the spring. We propose that the enhancement of photorespiration (under high pO2/pCO2) induces a temporary burst in catalase activity despite the progressively photoinhibitory conditions of early summer.  相似文献   

2.
Peridiniopsis polonicum (Wolosz.) Bourrelly requires vitamin B12, and Peridinium limbatum (Stokes) Lemm. requires thiamin for growth. Unlike marine Peridinium species, Peridinium willei Huit.-Kaas, P. volzii Lemm., and P. inconspicuum Lemm. do not display auxotrophy. Peridinium volzii is strongly inhibited by concentrations of biotin above 1 μg L?1.  相似文献   

3.
The intracellular levels of hot water extractable and total phosphorus were determined in the dinoflagellate Peridinium cinctum. f. westii (Lemm.) Lef. for natural samples from the bloom in Lake Kinneret and from laboratory cultures. Amounts of phosphorus (P) in the hot water fraction, relative to total cellular phosphorus, were similar in lake Peridinium and in cells grown in high ambient orthophosphate (Pi) media (3–6 mg P · l?1). The absolute amounts of hot water extractable P in natural cell and those cultured at lower Pi concentrations (0.02–0.05 mg P · 1?1) were similar, although average Pi in lake water were 4 μg · l?1. Under most growth conditions the hot water extract contained approximately equal amounts of molybdate reactive phosphorus (MRP) and non-MRP. Short chain (6–9 units) polyphosphates (mol wt 630–950) probably constituted the bulk of the non-MRP pool, which was hydrolysable by alkaline phosphatase and may serve as a precursor for a more permanent P store. Intracellular P levels and distribution were not directly dependent on external Pi concentrations but may be determined by the N:P atomic ratio or overall external ionic milieu. Peridinium grown in low ambient Pi released significant amounts of non-MRP compounds. In Lake Kinneret, for at least most of the bloom period, Peridinium does not appear to be limited by P supply.  相似文献   

4.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

5.
A comprehensive antioxidative mechanism was found in the freshwater dinoflagellate Peridinium gatunense Lemm. during the spring bloom in Lake Kinneret. Ascorbate was present throughout the bloom period and was responsible, together with catalase, for the elimination of photosynthetically produced H2O2. As glutathione concentrations and ascorbate regenerative enzymes were negligible during mid-spring, ascorbate was presumably biosynthesized during the photosynthetically active period. Antioxidative activity increased overall at the end of the spring in conjunction with elevated ambient stress conditions, for example high light. Under such circumstances, ascorbate was regenerated. Ascorbate levels doubled when cells were exposed to an increase in irradiance from 60 to 600 μmol photons·m?2·s?1, and on addition of H2O2, concentrations increased a further 20-fold. Significant antioxidative activity was also noted in the dark, although this was dependent on the presence of H2O2. Diurnal changes in antioxidants and their regenerative enzymes were observed. The activities of mono-dehydroascorbate reductase, glutathione reductase, and ascorbate concentrations showed ultraradian periodicity and were completely in phase throughout the day/night period. Dehydroascorbate reductase activity and glutathione concentrations were also in phase but showed aperiodic variation, as did ascorbate peroxidase activity. Superoxide dismutase and catalase activities were generally out of phase during the 24-h period but did show ultraradian periodicity. Lake samples entrained under constant light revealed an inate 12-h rhythm for catalase activity, during at least 36 h.  相似文献   

6.
High bulk extracellular phosphatase activity (PA) suggested severe phosphorus (P) deficiency in plankton of three acidified mountain lakes in the Bohemian Forest. Bioavailability of P substantially differed among the lakes due to differences in their P loading, as well as in concentrations of aluminum (Al) and its species, and was accompanied by species‐specific responses of phytoplankton. We combined the fluorescently labeled enzyme activity (FLEA) assay with image cytometry to measure cell‐specific PA in natural populations of three dinophyte species, occurring in all the lakes throughout May–September 2007. The mean cell‐specific PA varied among the lakes within one order of magnitude: 188–1,831 fmol · cell?1 · h?1 for Gymnodinium uberrimum (G. F. Allman) Kof. et Swezy, 21–150 fmol · cell?1 · h?1 for Gymnodinium sp., and 22–365 fmol · cell?1 · h?1 for Peridinium umbonatum F. Stein. To better compare cell‐specific PA among the species of different size, the values were normalized per unit of cell biovolume (amol · μm?3 · h?1) for further statistical analysis. A step‐forward selection identified concentrations of total and ionic Al together with pH as significant factors (P < 0.05, Monte Carlo permutation test), explaining cumulatively 57% of the total variability in cell‐specific PA. However, this cell‐specific PA showed an unexpected reverse trend compared to an overall gradient in P deficiency of the lake plankton. The autecological insight into dinophyte cell‐specific PA therefore suggested other factors, such as light availability, mixotrophy, and/or zooplankton grazing, causing further PA variations among the acidified lakes.  相似文献   

7.
Uptake and assimilation of nitrogen and phosphorus were studied in Olisthodiscus luteus Carter. A diel periodicity in nitrate reductase activity was observed in log and stationary phase cultures; there was a 10-fold difference in magnitude between maximum and minimum rates, but other cellular features such as chlorophyll a, carbon, nitrogen, C:N ratio (atoms) · cell?1 were less variable. Ks values (~2 μM) for uptake of nitrate-N and ammonium-N were observed. Phosphorus assimilated · cell?1· day?1 varied with declining external phosphorus concentrations; growth rates <0.5 divisions · day?1 were common at <0.5 μM PO4-P. Phosphate uptake rates (Ks= 1.0–1.98 μM) varied with culture age and showed multiphasic kinetic features. Alkaline phosphatase activity was not detected. Comparisons of the nutrient dynamics of O. luteus to other phytoplankton species and the ecological implications as related to the phytoplankton community of Narragansett Bay (Rhode Island) are discussed.  相似文献   

8.
Emiliania huxleyi (strain L) expressed an exceptional P assimilation capability. Under P limitation, the minimum cell P content was 2.6 fmol P·cell?1, and cell N remained constant at all growth rates at 100 fmol N·cell?1. Both, calcification of cells and the induction of the phosphate uptake system were inversely correlated with growth rate. The highest (cellular P based) maximum phosphate uptake rate (VmaxP) was 1400 times (i.e. 8.9 h?1) higher than the actual uptake rate. The affinity of the P‐uptake system (dV/dS) was 19.8 L·μmol?1·h?1 at μ = 0.14 d?1. This is the highest value ever reported for a phytoplankton species. Vmax and dV/dS for phosphate uptake were 48% and 15% lower in the dark than in the light at the lowest growth rates. The half‐saturation constant for growth was 1.1 nM. The coefficient for luxury phosphate uptake (Qmaxt/Qmin) was 31. Under P limitation, E. huxleyi expressed two different types of alkaline phosphatase (APase) enzyme kinetics. One type was synthesized constitutively and possessed a Vmax and half‐saturation constant of 43 fmol MFP·cell?1·h?1 and 1.9 μM, respectively. The other, inducible type of APase expressed its highest activity at the lowest growth rates, with a Vmax and half‐saturation constant of 190 fmol MFP·cell?1·h?1 and 12.2 μM, respectively. Both APase systems were located in a lipid membrane close to the cell wall. Under N‐limiting growth conditions, the minimum N quotum was 43 fmol N·cell?1. The highest value for the cell N‐specific maximum nitrate uptake rate (VmaxN) was 0.075 h?1; for the affinity of nitrate uptake, 0.37 L·μmol?1·h?1. The uptake rate of nitrate in the dark was 70% lower than in the light. N‐limited cells were smaller than P‐limited cells and contained 50% less organic and inorganic carbon. In comparison with other algae, E. huxleyi is a poor competitor for nitrate under N limitation. As a consequence of its high affinity for inorganic phosphate, and the presence of two different types of APase in terms of kinetics, E. huxleyi is expected to perform well in P‐controlled ecosystems.  相似文献   

9.
The existence of a phenomenon in phosphorus (P) nutrition comparable to the “Neish effect” in nitrogen (N) nutrition (an inverse relation between seawater N enrichment and carrageenan content) was investigated in the temperate red alga Chondrus crispus Stackhouse. Plants were preconditioned for 17 d and then cultured under varying enrichments of P (0, 3, 6, 10, 15 μM P·wk?1) and a constant N enrichment (53.5 μM N·wk?1) for 5 wk. Tissue total P, tissue total N, and carrageenan contents were then determined. Identical experiments were performed using C. crispus collected during the fall, winter, spring, and summer seasons. The procedure was repeated using material collected during the following fall season and cultured under constant P (6 μM P·wk?1) and varying N enrichments (0, 3, 6, 10, 25 μM N·wk?1). In the fall (P) experiment, carrageenan content was the highest [53.1 ± 0.3% DW (dry weight)], and tissue total P content was the lowest (1.71 ± 0.27 mg P·g DW?1) in plants that received no P enrichment. Carrageenan content was stable (46.1 ± 1.8% DW) for plants given enrichments of 3 μM P·wk?1 and greater. Thus, a decrease in carrageenan content, concomitant with an increase in tissue total P content, was observed, but only at tissue total P levels below 2 mg P·g DW?1. As these levels were always higher than 2 mg P·g DW?1 in the winter, spring, and summer experiments, carrageenan content remained constant within each season at 46.2 ± 1.3, 43.1 m 0.7, and 44.5 ± 0.6% DW, respectively. Nitrogen enrichment of plants collected in the fall did not affect carrageenan content, which was stable at 49.3 ± 0.9% DW. When these plants were compared with those of the previous fall experiment (6 μM P·wk?1 and 53.5 μM N·wk?1), a slight increase in carrageenan content was noted. Thus, at sufficiently high concentration, N also decreased carrageenan content in C. crispus. Phosphorus nutrition had no significant effect on photosynthesis versus irradiance parameters (Pmax, α, Rd, Ic, and Ik), the contents of the photosynthetic pigments chlorophyll-a, phycoerythrin (PE), phycocyanin (PC), and allophycocyanin (APC), and the ratios PE:APC and PC:APC. In contrast, N nutrition affected both Pmaxand the photosynthetic pigment contents. The data indicate that N limitation reduces the number of phycobilisomes but not their size. The greater reduction in phycobiliprotein than chlorophyll-acontent corroborates the natural bleaching phenomenon regularly observed in C. crispus populations during summer when N levels are generally low in seawater. These results suggest that C. crispus in the temperate waters of the Bay of Fundy may experience N limitation, but P limitation is unlikely.  相似文献   

10.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. showed pronounced differences in chemical composition and ability to maintain P fluxes. The cellular P:C ratio (Qp) and the surplus P:C ratio (Qsp) were higher in M. aeruginosa, indicating a lower yield of biomass C per unit of P. The subsistence quota (Qp) was 1.85 μg P·mg C?1in S. luetkemuellerii and 6.09 μg P·mg C?1in M. aeruginosa, whereas the respective Qp of P saturnted organisms (Qs) were 43 and 63 μg P·mg C?1. These stores could support four divisions in S. luetkemuellerii and three divisions in M. aeruginosa, which suggests that the former exhibited highest storage capacity (Qs/Q0). M. aeruginosa showed a tenfold higher activity of alkaline phosphatase than S. luetkemuellerii when P starved. The optimum N:P ratio (by weight) was 5 in S. luetkemuellerii and 7 in M. aeruginosa. The initial uptake of Pi pulses in the organisms was not inhibited by rapid (<1 h) internal feedback mechanisms and the short term uptake rote could be expressed solely as a function of ambient Pi. The maximum cellular C-based uptake rate (Vm) in P starved M. aeruginosa was up to 50 times higher than that of S. luetkemuellerii. It decreased with increasing growth rate (P status) in the former species and remained fairly constant in the latter. The corresponding cellular P-based value (Um= Vm/Qp) decreased with growth rate in both species and was about 10 times higher in P started M. aeruginosa than in S. luetkemuellerii. The average half saturation constant for uptake (Km) was equal for both species (22 μg P·L?1) and varied with the P status. S. luetkemuellerii exhibited shifts in the uptake rate of Pi that were characterized by increased affinity (Um/Km) at low Pi, concentrations (<4 μg P·L?1) compared to that at higher concentrations. The species thus was well adapted to uptake at low ambient Pi, but M. aeruginosa was superior in Pi uptake under steady state and transient conditions when the growth rate was lower than 0.75 d?1. Moreover, M. aeruginosa was favored by pulsed addition of Pi. M. aeruginosa relpased Pi at a higher rate than S. luetkemuellerii. Leakage of Pi from the cells caused C-shaped μ vs. Pi curves. Therefore, no unique Ks for growth could be estimated. The maximum growth rate (μm) (23° C) was 0.94 d?1for S. luetkemuellerii and 0.81 d?1for M. aeruginosa. The steady state concentration of Pi (P*) was lower in M. aeruginosa than in S. luetkemuellerii at medium growth rates. The concentration of Pi at which the uptake and release of Pi was equal (Pc was, however, lower in S. luetkemuellerii.  相似文献   

11.
Many shallow lakes in north temperate zones experience reduced dissolved oxygen concentration under ice. However, some shallow lakes display supersaturated dissolved oxygen concentrations (>20 mg·L ? 1) in late winter under conditions of maximum ice thickness. During the winters of 1996, 1997, and 1999, we collected phytoplankton samples from Arrowwood Lake near Pingree, North Dakota to determine whether a specific alga was involved in dissolved oxygen supersaturation in this lake. Although dissolved oxygen supersaturation was not observed during this period, we did observe an increase in dissolved oxygen concentration that was associated with a phytoplankton bloom during late February and early March in both 1996 and 1997. In 1996, the bloom was composed of the dinoflagellate, Peridinium aciculiferum (Lemm.) Lemm. and several species of cryptomonads. A similar bloom of P. aciculiferum was followed by a bloom of several species of euglenoids in 1997. In contrast, P. aciculiferum was only a minor component of the winter phytoplankton, dissolved oxygen concentrations remained low, and no bloom event was observed in 1999. Statistical analyses indicated a significant relationship (rs = 0.57, P = 0.019) between dissolved oxygen levels and the density of the dinoflagellate, P. aciculiferum, but no significant relationship between dissolved oxygen levels and densities of other phytoplankton. These results suggest that the elevated levels of dissolved oxygen are associated with the dinoflagellate, P. aciculiferum. This bloom was most likely the result of an excystment event rather than a general growth response.  相似文献   

12.
Cellular nutrient concentrations and nutrient uptake rates of Cladophora glomerata (L.) Kuetzing were determined during summer and fall in 1989–1990 at a site on the upper Clark Fork of the Columbia River, Montana. Both physiological tests indicated that Cladophora growth is likely to be limited by nitrogen during late summer-early fall. Maximum uptake rates of ammonia-N and nitrate-N were 5935–6991 and 507–984 μg · g DW?1· h?1, respectively, during July–October when dissolved inorganic nitrogen (DIN) concentrations in the river were less than 10 μg · L?1. During November-December, when DIN was 72–376 μg · L?1, maximum ammonia-N uptake was 1137–1633 μg · g DW?1· h?1 and maximum nitrate-N uptake was 0–196 μg · g DW?1· h?1. Cellular nitrogen during summer–early fall was 0.78–1.80% of Cladophora dry weight, frequently at or below 1.1%, a level suggested as a critical minimum N concentration for maximum growth. In contrast, cellular P was 0.18–0.36% of dry weight, 3–6 times the suggested critical P concentration of 0.06%. Molar ratios of cellular N:P (< 16:1) and DIN: SRP (< 4:1) during late summer-early fall also indicated potential N limitation. Cellular N and P from Cladophora collected from a second site influenced by a municipal wastewater discharge in 1990 displayed similar seasonal trends. At both sites, seasonal fluctuations in DIN were closely tracked by changes in cellular N, Cellular P, however, increased through the growing season despite declining levels of SRP in the river.  相似文献   

13.
A planktonic alga similar in general morphology and pigments to Aureococcus anophagefferens Hargraves and Sieburth has caused persistent and ecologically damaging blooms along the south Texas coast. Experiments using 100 μM NO3?, NO2?, and NH4+ demonstrated that the alga could not use NO3? for growth but could use NO2? and NH4+. Doubling iron or trace metal concentrations did not permit growth on NO3?. Chemical composition data for cultures grown in excess NO3? or NH4+, respectively, were as follows: N·cell?1 (0.88 vs. 1.3 pg), C:N ratio (25:1 vs. 6.4:1), C:chlorophyll a (chl a) (560:1 vs. 44:1), and chl a·cell?1 (0.033 vs. 0.16 pg). These data imply that cells supplied with NO3? were N-starved. Culture addition of 10 mM final concentration chlorate (a nitrate analog) did not affect the Texas isolate while NO3? utilizing A. anophagefferens was lysed, suggesting that the NO3? reductase of the Texas isolate is nonfunctional. Rates of primary productivity determined during a dense bloom indicated that light-saturated growth rates were ca. 0.45 d?1, which is similar to maximum rates determined in laboratory experiments (0.58 d?1± 0.16). However, chemical composition data were consistent with the growth rate of these cells being limited by N availability (C:N 28, C:chl a 176, chl a·cell?1 0.019). Calculations based on a mass balance for nitrogen suggest that the bloom was triggered by an input of ca. 69 μM NH4+ that resulted from an extensive die-off of benthos and fish.  相似文献   

14.
Growth limitation of submerged aquatic macrophytes by inorganic carbon   总被引:4,自引:1,他引:3  
1. This study determined the effects of CO2 and HCO3- enrichment on in situ growth of two submerged macrophytes, Elodea canadensis and Callitriche cophocarpa, in two Danish lakes: Lake Hampen and Lake Væng. Lake Hampen is an oligotrophic low-alkaline lake (0.4 meq ?1) and Lake Væng is mesotrophic with an alkalinity of 1.1 meq 1-?1. In Lake Hampen experiments were carried out throughout the growth season, whereas experiments in Lake Væng were restricted to late summer. The CO2 and HCO3-enrichment procedures used increased the concentration of free-CO2 by 500–1000 μM and the concentration of HCO3- by about 80 μM. 2. The concentration of free-CO2 in Lake Hampen was about five times atmospheric equilibrium concentration (55 μM) in early summer declining to virtually zero at the end of summer. 3. Under ambient conditions Callitriche, which is restricted to CO2 use, was unable to grow and survive in both lakes. In contrast, Elodea, which has the potential to use HCO3- in photosynthesis, grew at rates varying from 0.046 to 0.080 day?1 over the season. 4. Under CO2 enrichment the growth rate of Callitriche varied from 0.089 to 0.124 day?1 and for Elodea from 0.076 to 0.117 day?1 over the season. Enrichment with HCO3-affected Elodea only and only to a limited extent. This may be a result of insufficient increase in [HCO3-] upon enrichment or to a limited capacity of the plants to take up HCO3-. 5. The substantial stimulation of in situ growth of Elodea and Callitriche by enhanced concentrations of free-CO2 shows that inorganic carbon is an important determinant of growth of submerged macrophytes and that inorganic carbon limitation of in situ growth may be a common phenomenon in nature, even in lakes with an alkalinity as high a 1 meq 1-?1. Inorganic carbon, however, is only one of many parameters important for growth, and the growth rates of Elodea at both ambient and high free-CO2 were closely coupled to day length and photon irradiance, indicating that light had an ultimate control on growth.  相似文献   

15.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

16.
The effects of oils and oil components on algae: A review   总被引:1,自引:0,他引:1  
Plate structure analysis of the bloom-forming Peridinium of Lake Kinneret (previously identified as P. cinctum fa. westii) established its identity as P. gatunense. Peridinium cinctum was not observed. Material from different years and periods of the bloom, as well as specimens from cultures and P. gatunense from Lago Cristalino (Brazil), were studied using light and scanning electron microscopy. Peridinium gatunense from Lake Kinneret showed slight differences of the plate pattern as compared with specimens from other localities.  相似文献   

17.
Two planktonic algal species, Staurastrum chaetoceras (Schr.) G. M. Smith and Cosmarium abbreviatum Rac. var. planctonicum W. et G. S. West, from trophically different alkaline lakes, were compared in their response to a single saturating addition of phosphate (P) in a P-limited growth situation. Storage abilities were determined using the luxury coefficient R = Qmax/Q0. Maximum cellular P quotas differed, depending on whether cells were harvested during exponential growth at μmax (Qmax, R being 26.7 and 9.1 for C. abbreviatum and S. chaetoceras, respectively) or harvested after a saturating pulse at P-limited growth conditions (Q′max, R being 53.5 and 20.2 for C. abbreviatum and S. chaetoceras, respectively). At stringent P-limited conditions, maximum initial uptake rates were higher in S. chaetoceras than in C. abbreviatum (0.094 and 0.073 pmol P·cell?1·h?1, respectively), but long-term (net) uptake rates (over ~20 min) were higher in C. abbreviatum than in S. chaetoceras (0.048 and 0.019 pmol P·cell?1·h?1, respectively). Before growth resumed after the onset of a large P addition (150 μmol·L?1), a lag phase was observed for both species. This period lasted 2–3 days for S. chaetoceras and 3–4 days for C. abbreviatum, corresponding with the time to reach Qmax. Subsequent growth rates (over ~10 days) were 0.010 h?1 and 0.006 h?1 for S. chaetoceras and C. abbreviatum, respectively, being only 20%–30% of maximum growth rates. In conclusion, S. chaetoceras, with a relatively high initial P-uptake rate, short lag phase, and high initial growth rate, is well adapted to a P pulse of short duration. Conversely, C. abbreviatum, with a high long-term uptake rate and high storage capacity, appears competitively superior when exposed to an infrequent but lasting pulse. These characteristics provide information about possible strategies of algal species to profit from temporarily high P concentrations.  相似文献   

18.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

19.
Tamar Zohary 《Freshwater Biology》2004,49(10):1355-1371
1. Phytoplankton abundance and species composition in Lake Kinneret, Israel, have been monitored at weekly or fortnightly intervals since 1969. This paper summarises the resulting 34‐year phytoplankton record with a focus on the last 13 years of new data, and reassesses an earlier conclusion that the lake phytoplankton shows remarkable stability despite a wide range of external pressures. 2. The Kinneret phytoplankton record can be split into two major periods. The first, from 1969 till 1993, was a period of distinct stability expressed by a typical annual pattern revolving around a spring bloom of the dinoflagellate Peridinium gatunense that repeated each year. The second period, starting around 1994 and ongoing, is characterised by the loss of the previously predictable annual pattern, with both ‘bloom years’ and ‘no‐bloom years’. 3. In the second period, deviations from the previous annual pattern include: the absence of the prevailing spring P. gatunense blooms in some years and increased variability in the magnitude of the bloom in others; intensification of winter Aulacoseira granulata blooms; higher summer phytoplankton biomass with replacement of mostly nanoplanktonic, palatable forms by less palatable forms; new appearance and establishment of toxin‐producing, nitrogen fixing cyanobacteria in summer; increase in the absolute biomass and percentage contribution of cyanobacteria to total biomass; and fungal epidemics attacking P. gatunense. 4. The 34‐year record serves to validate Schindler's (1987) assessment that phytoplankton species composition will respond to increased anthropogenic stress before bulk ecosystem parameters.  相似文献   

20.
The growth requirements of inorganic and organic selenium (Se) for the dinoflagellate Peridinium cinctum fa. westii and the diatom Stephanodiscus hantzschii var. pusillus and eight species of green algae are demonstrated. A new mineral culture medium for P. cinctum is presented. Using P. cinctum as a test alga, bioassays were carried out on waters from a calciferous lake and from some acidified, fertilized, lime-enriched or humic lakes for determination of their contents of bioavailable forms of Se (bioactive Se). Some of the results were related to Tot-Se and selenite-Se, measured chemically, to pH and the occurrence of ambient phytoplankton. In calcium-rich Lake Erken (pH ~ 8) blooms and decline of algae coincided with decreases (from >70 to ~20 ng Se · l?1) and increases (up to >80 ng · l?1) of bioactive Se, indicating uptake and release of inorganic or organic forms of Se. Acidified lakes (pH < 5) generally demonstrated much lower concentrations of bioactive Se (<20 ng · l?1) than neutral, fertilized, lime-enriched, slightly acidic or humic lakes (>20 ng · l?1). The correlation between pH and bioactive Se was positive (r ~ 0.92; n = 7). The ecological importance of Se is suggested for some common species of phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号