首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Summary The filum terminale, or terminal portion of the spinal cord, was studied in normal adult frogs (Rana pipiens) by means of light and electron microscopy. Astroglial cells are the predominant elements in this region. The rostral portion of the filum terminale consists mainly of (1) a peripheral dense ring of myelinated and some unmyelinated nerve fibers, and processes of astrocytes terminating at the subpial space; (2) an intermediate zone, in which astrocytes are the main cellular elements in addition to a few degenerated neurons; and (3) a central region where the central canal is lined by dark and light ependymal cells. In the caudal portion of the filum terminale, the amount of neuropil is greatly reduced. This region is formed mainly by astrocytic glial cells and very few neuronal elements. The central canal in the caudal portion is located ventrally and contains a lining consisting almost exclusively of dark ependymal cells.  相似文献   

2.
The spinal cord of two tetraodontiform fishes, the Japanese file fish (Navodon modestus) and the panther puffer (Takifugu pardalis), are unusual among vertebrates in having a markedly abbreviated spinal cord with a long and flattened filum terminale. Only the rostral short part of the cord of both species is cylindrical; the greater part of the cord is markedly flat. The majority of the spinal nerve roots leave the short cylindrical part. The flattened part of the cord contains the central canal, myelinated nerve fibers, and a few motoneurons surrounding the cauda equina, and it is histologically similar to the filum terminale of amphibians and mammals. The spinal cords of other teleosts, the sun-fish and angler, also are abbreviated and possess a filum terminale and cauda equina. These orders possess an enormous head and short trunk. However, the correlation between this body form and an abbreviated cord is not causal, since the tetraodontiform species described here show ordinary body proportions. The spinal cord may be abbreviated in tetraodontiform fishes in general.  相似文献   

3.
In teleosts, the spinal cord generally extends along the entire vertebral canal. The Tetraodontiformes, in which the spinal cord is greatly reduced in length with a distinct long filum terminale and cauda equina, have been regarded as an aberration. The aims of this study are: 1) to elucidate whether the spinal cord in all tetraodontiform fishes shorten with the filum terminale, and 2) to describe the gross anatomical and histological differences in the spinal cord among all families of the Tetraodontiformes. Representative species from all families of the Tetraodontiformes, and for comparison the carp as a common teleost, were investigated. In the Triacanthodidae, Triacanthidae, and Triodontidae, which are the more ancestral taxa of the Tetraodontiformes, the spinal cord extends through the entire vertebral canal. In the Triacanthidae and Triodontidae, the caudal half or more spinal segments of the spinal cord, however, lack gray matter and consist largely of nerve fibers. In the other tetraodontiform families, the spinal cord is shortened forming a filum terminale with the cauda equina, which is prolonged as far as the last vertebra. The shortened spinal cord is divided into three groups. In the Ostraciidae and Molidae, the spinal cord tapers abruptly at the cranium or first vertebra forming a cord‐like filum terminale. In the Monacanthidae, Tetraodontidae, and Diodontidae, it abruptly flattens at the rostral vertebrae forming a flat filum terminale. The spinal cord is relatively longer in the Monacanthidae than that in the other two families. It is suggested by histological features of the flat filum terminale that shortening of the spinal cord in this group progresses in order of the Monacanthidae, Tetraodontidae, and Diodontidae. In the Balistidae and Aracanidae, the cord is relatively long and then gradually decreased in dorso‐ventral thickness. J. Morphol. 276:290–300, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
This study deals with some macroscopical, microscopical, and ultrastructural aspects of the spinal cord central canal of the German shepherd dog. The caudal end of the spinal cord is constituted by the conus medullaris, which may extend to the first sacral vertebra, the terminal ventricle, and the filum terminale. The latter structure is considered as internum (second to third sacral vertebrae) or externum (fifth caudal vertebra), according to its relation to the dura mater. Occasionally, there is a second anchorage which is close to the level of the sixth caudal vertebra. The central canal is surrounded by a ciliated ependymal epithelium, which differs depending upon the levels. The most caudal part of the filum terminale bears a columnar ciliated ependymal epithelium surrounded by two layers of glia and pia mater, which separate the central canal from the subarachnoid space. Microfil injections show a communication between the cavity and the subarachnoid space, as the plastic is able to pass through the ependymal epithelium. At the level of the terminal ventricle there are real separations of the ependymal epithelium, which seem to connect the lumen of the spinal canal with the subarachnoid space. These structures probably constitute one of the drainage pathways of the cerebrospinal fluid. The diameter of the central canal is related to the age of the animal. However, even in very old animals the spinal cord central canal reaches the tip of the filum terminale and remains patent until death. At the ultrastructural level the ependymal cells present villi, located on cytoplasmic projections, cilia, dense mitochondria, and oval nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

5.
ABSTRACT The spinal cords of vertebrates are generally divided into the cord proper and the minute filum terminale. While the spinal cord extends the entire length of the vertebral canal in the adult tiger puffer, Takifugu rubripes, the cord proper is greatly reduced in length and almost all of the canal is occupied by the filum terminale, which is tape-like rather than thread-like. The dorsal and ventral roots of the spinal nerves extend, respectively, above and below the filum terminale; as a whole, these form a massive cauda equina. Supramedullary cells are found in the rostral half of the medulla oblongata caudal to the cerebellum. In 4-mm long tiger puffers, the spinal cord is cylindrical and supramedullary cells are found in the rostral half of the cord. In 7-mm puffers, the longitudinally arranged ventral roots appear ventrally in the middle portion of the spinal cord. In 15-mm puffers, the dorsal and ventral roots run longitudinally along the spinal cord and have noticeably increased in number. Supramedullary cells are located in the rostral 15% of the cord. In 21-mm puffers, the spinal cord in large part becomes dorsoventrally flattened. In 30-mm puffers, the spinal cord becomes much flatter, and supramedullary cells now are located mainly in the medulla oblongata. These observations indicate that formation of the shortened spinal cord proper is due to at least two developmental processes. First, the elongation of the spinal cord proper is remarkably less than that of the vertebral canal. Second, the bulk of the spinal cord proper is translocated to the cranial cavity, where it is transformed into part of the medulla oblongata.  相似文献   

6.
In a previous paper, the concept of the terminal organ (TO) of the subcommissural complex was forwarded. Functionally this complex is a neuro (glio-) hemal organ which serves to discharge the Reissner's secretory material into the systemic circulation. The TO is characterized by structural specializations that make feasible the discharge and chemical decomposition of the secretory material stowed in the massa caudalis (MC). The TO is probably not only the ampulla caudalis (AC); it may comprise even parts of the filum terminale next to the AC. The boundary of the TO is uncertain as yet. It cannot be precluded that the AC, which itself varies in shape and size, is just a receptaculum massae caudalis. The material of the MC escapes from the AC either through apertures of the wall of the AC or of the filum terminale (Neuropori caudalis, slit-shaped gaps). It is also likely that the secretory material becomes chemically decomposed in the AC and is intra- (trans-) cellularly discharged. In this connexion, certain ependymal cells may be of significance. These cells exhibit large, tongue-shaped central projections (temporarily developed?) which bear a considerable number of long microvilli. The significance of these cells probably lies in the enlargement of the cell surface bathing in the CSF which contains the MC. These cells are most abundant in the area of the TO; single, isolated cells of the same type occur in other areas of the ependyma of some primates. This would indicate that the TO does not contain special types of cells not found in other parts of the ependyma, but that the TO differs from other ependymal regions in the density of peculiar cell types.  相似文献   

7.
Zusammenfassung Das kaudale Rückenmark von 80 Karpfen wurde auf das Vorkommen und die Lokalisation von Monoaminooxydase, Acetylcholinesterase und Monoaminen untersucht. Die Monoaminooxydase ist in den neurosekretorischen Zellgruppen relativ gleichmäßig verteilt, während die Acetylcholinesteraseaktivität von Zelle zu Zelle beträchtlich schwankt. Monoaminooxydaseaktivität ist in der gesamten Urophyse vorhanden. Dagegen konnte die Acetylcholinesterase histochemisch nur in den neurosekretorischen Zellen und den Nervenfasern erfaßt werden, die in das Filum terminale ziehen. Die Monoamine sind in den neurosekretorischen Neuronen perinucleär angeordnet. Nach Blockade des aminergen Systems mit Nialamid reichern sie sich in diesen Zellen an. Der Monoaminooxydasenachweis fällt nach einer Blockade negativ aus, die Aktivität der Acetylcholinesterase bleibt jedoch unbeeinflußt. Die Befunde am kaudalen neurosekretorischen System werden mit den Verhältnissen im Hypothalamus bei verschiedenen Species verglichen. Der Transmittermechanismus wird diskutiert.
Acetylcholinesterase, monoaminooxidase and monoamines in the caudal neurosecretory system of the carp, Cyprinus carpio
Summary The distribution and localization of monoamine oxidase, acetylcholinesterase and monoamines has been investigated in the caudal spinal cord of 80 carps. The monoamine oxidase is comparatively evenly distributed in the neurosecretory cell groups, whereas the acetylcholinesterase activity varies remarkably from cell to cell. In contrast to monoamine oxidase, which occurs throughout the whole urophysis, acetylcholinesterase is confined to the neurosecretory cells and to nerve fibres entering the filum terminale. The monoamines show a perinuclear distribution in the neurosecretory neurons. The inhibition of the aminergic system by nialamid results in an increase of monoamines in these cells and a negative reaction for monoamine oxidase; the acetylcholinesterase, however, is not influenced by this inhibition. The results obtained in the caudal neurosecretory system are compared with the situation in the hypothalamus of different species. The transmitter mechanism is discussed.


Mit dankenswerter Unterstützung durch einen Forschungsauftrag des Ministeriums für Hoch- und Fachschulwesen der DDR.  相似文献   

8.
Summary The caudal neurosecretory system of Clupea melanostoma is described. The urophyseal area in this species is merely a spinal cord enlargement divided into two distinct zones: a ventral and ventrolateral vascular zone where neurosecretory material is concentrated, and a dorsal cell-rich area where the perikarya of the neurosecretory cells are found.The hypothesis is advanced that the first-named vascular area has developed into the more differentiated urophysis of the less primitive teleosts while the dorsal cell-rich area has become part of the filum terminale. Two main types of neurosecretory cells are described.This work was supported by grant L 96 Z from the Consejo Nacional de Investigaciones Cientificas y Técnicas.  相似文献   

9.
Summary The filum terminale of the rat was found to contain a large number of descending 5-hydroxytryptamine (5-HT)- and noradrenaline-containing axons as visualized histochemically using fluorescence microscopy of air-dried spread preparations. By this technique, central 5-HT-containing nerve fibers become easily accessible for rapid and sensitive fluorescence histochemistry. Both transmitter pharmacology and axonal flow dynamics can be studied in this preparation where several centimeters of 5-HT-axons can be obtained.  相似文献   

10.
Ultrastructure of the renette cell and caudal glands was studied in the free-living aquatic nematode Sphaerolaimus gracilis. The renette cell occurred posterior to the esophageal-intestinal junction and opened through an ampulla to a ventral pore behind the nerve ring. The caudal gland system of the tail consisted of two gland cells opening through separate pores and 2 to 3 other gland cells of a different type opening through a common pore. The renette cell and the two caudal gland cells were similar and both contained secretory granules, 0.5-1.5 μm in diameter. The material released attached the nematode to the substrate. The renette ampulla was surrounded by a specialized cell, the ampulla cell, which had characteristics of myoepithelium. A plug or valve structure connected to the ampulla cell may regulate the output of the secretory material. The ampulla cell is able to contract and thus is probably under direct neuronal control. Other cells in the renette ampulla region of body cavity were termed supporting cells. Living, cold-relaxed nematodes were attached to sediment particles in the renette pore region and at the tail tip. Release from sediment particles was mechanical at the renette cell discharge site but appeared to be chemical at the caudal gland. In behavioral experiments, nematodes in a water current had the ability to release a thread from the caudal glands while maintaining contact with a sediment particle attached to the tail end. If the thread was strong enough, it also could be used to change location. Nematodes anchored by the thread from the caudal glands to a sediment particle could float in water currents until they attached themselves to another sediment particle with the help of secretions from the renette cells.  相似文献   

11.
The macula sacculi and the macula lagenae of the herring, Clupea harengus L., were examined by light microscopy, the macula lagenae is large compared to what is normal among non-ostariophysan fishes, the morphological polarization of the hair cells in the inferior maculae shows a pattern which is similar to that usually seen in teleost fishes. The fibres in the nerves supplying the macula sacculi and the macula lagenae were counted and their diameters measured. The ramulus saccularis is divided in two separate ramuli innervating populations of hair cells with different morphological polarization. The saccular rostral nerve trunk contains 1800–2300 fibres, with 1300–1800 fibres in the caudal nerve trunk. The lagenar nerve is composed of 2100–4000 fibres. The fibre diameters are 1–14 μm in all ramuli. Silver staining of the nerve axoplasm reveals a unique differentiation of the maculae, which can be divided into a central area surrounded by a peripheral part. The hair cells in the central area are innervated by thick nerve fibres (5–14 μm diameter) as well as a few thin nerve fibres (about 1 μm diameter), while the receptor cells in the peripheral area are exclusively innervated by thin fibres having diameters of 2 μm or less.  相似文献   

12.
The activity of efferent vestibular fibres has been recorded on the nerve of the left vertical anterior semicircular canal detached from its ampulla during rotations in the horizontal plane. Different types of responses have been found; they are noted in table I and pictured on fig. 2.  相似文献   

13.
1. The caudal extent of the collateral arborizations of entering sensory fibres in rat spinal cord was investigated by two methods: bulk labelling of peripheral nerves by injection of horseradish peroxidase conjugated to cholera toxin (B-HRP) and by antidromic stimulation using small currents from microelectrodes in the spinal cord while recording from single units in peripheral nerve or dorsal root. 2. The results show that injection of B-HRP into the sural or sciatic nerve labelled sural afferents in the grey matter three to four segments caudal to their root entry and sciatic nerve fibres were located in S4, the most caudal segment examined, four to six segments caudal to their root entry. 3. Detailed mapping with microelectrode stimulation showed that the parent descending fibres from filaments dissected from the L1 dorsal root coursed more than 20 mm, seven to eight segments caudal to the entry point in the dorsal columns and sent branches into the grey matter. Single units from the sural nerve were also followed caudally into the S2 and S3 spinal cord segments and also issued collateral branches into the grey matter. 4. The present results suggest that there is close agreement in the caudal penetration of long-ranging afferents by using complementary anatomical and electrophysiological methods.  相似文献   

14.
Summary The radial nerve cord ofMespilia globulus has been examined as an example of echinoid nerve cords. In the radius of echinoids only the ectoneural component of the nerve cord is present which is a derivative of the ectoderm. The nerve cord runs in the interior of the body and is accompanied by the epineural canal. In echinoids, the neuroepithelium makes up the upper and side walls of the epineural canal. Each lateral branch of the nerve cord forms a sort of neural tube. It encloses a branch of the epineural canal which represents an open connection with the sea water. Thus, the epineural canal exhibits numerous openings which probably allow sea water to flow back and forth. This organization is unique in echinoderms. — The neuroepithelium exhibits the organization of an epidermis with well-developed nervous elements. Glial cells are not present. The support cells are the true epithelial cells. Their monociliated cell bodies border the lumen and, by means of cytoplasmic stems that contain a bundle of filaments, they reach up to the basal lamina. The nerve cells and their trunk of nerve fibres fill the spaces between the support cells. — Three types of nerve cells can be distinguished according to their polarity: (1) Primary sensory cells that project a cilium into the epineural canal, the axon hillock region is at the opposite pole. (2) Subluminal cells whose cilium originates in the axon hillock region. (3) Neurones that lie within the trunk of nerve fibres. They are highly stretched in the direction of the nerve cord and are also provided with a cilium. Types 2 and 3 may be homologized with the basal nerve cells of the epidermis. They are possibly multipolar. — The lateral nerve cords make contact with the ampulla and pass the ambulacral plate parallel to the channel that connects the ampulla and the tube foot. The activity of the tube foot-ampulla system is possibly controlled by means of transmitter substances that diffuse through the connective tissue layer between the nerve cord and the myoepithelia of the ampulla and the tube foot respectively.  相似文献   

15.
Origin of adrenergic fibres of vagus is studied. They are shown to appear in the thoracic vagus through caudal anastomosis introduction. The observations indicated that axons of spinal neurons and neurons of the ganglion stellate passed through caudal anastomosis and entered a thoracic vagus nerve. Stimulation of the thoracic vagus in cats after atropine sulphate injection increases the heart rate.  相似文献   

16.
The ampulla ureter and ampulla urogenital/uriniferous papilla represent differing morphologies of the caudal urogenital ducts in snakes. The ampulla ureter is an enlarged portion of the caudal extremity of the ureter that communicates the cranial regions of the ureter and the ductus deferens/Wolffian duct to the urodaeum. The ampulla urogenital/uriniferous papilla is an enlarged pouch, distinct from the ureter, which communicates the ureter and ductus deferens/Wolffian duct to the urodaeum. Although functional differences of these two structures are unknown, the ampulla urogenital/uriniferous papilla may have evolved for urine storage in males and females, and secondarily evolved a reproductive function in males. The most parsimonious optimization of the ampulla ureter and ampulla urogenital/uriniferous papilla indicates that the ampulla ureter is the ancestral state in snakes. Examining the presence or absence of the ampulla ureter and ampulla urogenital/uriniferous papilla in snakes on conflicting caenophidian phylogenies results in two hypotheses for the evolution of these variant morphologies: (1) The ampulla urogenital/uriniferous papilla evolved from the ampulla ureter independently in the Colubroidea and Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and (2) a single transition from the ampulla ureter to the ampulla urogenital/uriniferous papilla on the branch leading to the Colubroidea + Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and Colubroidea. The presence of the ampullae urogenital/uriniferous papilla in only the Colubroidea and Elapoidea highlights the affinity of these two taxonomic groups, a relationship that is strongly supported in published cladograms produced with molecular datasets.  相似文献   

17.
To determine the tapering of human nerve fibres, rostral and caudal root pieces of cauda equina nerve roots were removed and nerve fibre diameter distributions were constructed for 4 myelin sheath thickness ranges for the two sites, and compared with each other. The reduction of the group diameter in the different alpha-motoneuron groups was 0.2 % per 13 cm. Accounting for systematic errors, there may be even less tapering. An identified single nerve fibre showed no tapering. Further, there is indication that gamma-motoneurons, preganglionic sympathetic and parasympathetic fibres and skin afferents also reduce their fibre diameter by 0.2 % per 13 cm or less. Consequently, a nerve fibre with a diameter of 10 microm would be reduced to approximately 9.8 microm at 1m from the cell soma. Preganglionic parasympathetic fibres were found to be represented in roots S1 to S5. At similar distances from the spinal cord, the mean diameter of ventral root alpha1-motoneuron (FF) axons increased from the thoracic towards the lumbo-sacral region before decreasing again in the lower sacral region. Usually no alpha1-motoneuron axons were found in S5 roots. The diameter distribution of unmyelinated nerve fibres of a ventral S5 root showed three peaks at 0.25, 0.95 and 1.2 microm. The unmyelinated fibres with diameters around 0.25 microm may represent parasympathetic fibres. In six selected areas of the ventral S5 root, 6.6 times more unmyelinated nerve fibres than myelinated fibres were found on the average.  相似文献   

18.
Effect of ovulation on sperm transport in the hamster oviduct   总被引:1,自引:0,他引:1  
When hamsters mate shortly after the onset of oestrus (4.5-6 h before the onset of ovulation), spermatozoa are stored in the caudal isthmus of the oviduct until near the time of ovulation. At this time, a few spermatozoa ascend to the ampulla to fertilize the eggs. Superovulation resulted in a significant increase in the number of spermatozoa in the caudal isthmus at 6 h post coitus (p.c.) and in the ampulla and bursal cavity at 12 h p.c. Precocious ovulation resulted in a highly significant reduction in the total number of spermatozoa in the oviduct at 3 and 6 h p.c. This effect was completely overcome by intrauterine artificial insemination, suggesting lack of cervical patency as the block to sperm transport in precociously ovulated animals. Ligation of the ampulla-infundibulum junction in naturally ovulating hamsters resulted in significantly fewer spermatozoa in the caudal isthmus and ampulla at 12 h p.c. Preclusion of ovulation also resulted in fewer spermatozoa in the caudal isthmus and ampulla at 12 h p.c., suggesting that the products of ovulation stimulate sperm transport in the oviduct.  相似文献   

19.
40 adult cats were made hydrocephalic by intracisternal injection of 200 mg Kaolin. 34 survived between 24 hours to 4 months. In 19 cases a ventriculostomy was carried out, whereby in 13 animals a contrast filling of the central canal occurred. The contrast medium injected into the ventricles entered the external CSF-space in the lumbo-sacral junction of the filum terminale. Light- and electron-microscopic studies showed adaptive structural changes of the central canal epithelium in the early stages. In later stages massive destructions of ependyma and spinal cord parenchyma were found.  相似文献   

20.
Summary The caudal spinal cord of the coho salmon was investigated by means of immunocytochemistry using antisera against serotonin, urotensin I, urotensin II, somatostatin and a urea-extract of bovine Reissner's fiber (AFRU). Populations of serotonin-immunoreactive (IR) neurons were found rostral and dorsal to the urophysis in close spatial association with caudal secretory neurons. Thick, smooth serotonin-IR processes extended toward the external surface of the spinal cord where they displayed conspicuous terminal dilatations. Thin, beaded serotonin-IR fibers appeared to innervate populations of caudal secretory and somatostatin-IR cerebrospinal fluid-contacting neurons. Most caudal neurosecretory cells displayed both urotensin I and urotensin II immunoreactivities; only a minority reacted exclusively with either urotensin I or urotensin II antisera. Urotensin II-IR and somatostatin-IR cerebrospinal fluid (CSF)-contacting neurons were found as an integral component of the central canal wall in the caudal spinal cord and filum terminale; their dendritic processes appeared to contact Reissner's fiber, which displayed a weak AFRU-immunoreactivity while inside the central canal, but became strongly reactive in the interior of the terminal ventricle as it formed the massa caudalis. The distribution of serotoninergic processes points to a regulatory role in the function of caudal secretory and CSF-contacting neurons and to a putative serotonin release into the subarachnoid space and/or meningeal vasculature. It is also suggested that the CSF-contacting neurons of the central canal may participate in a feedback mechanism controlling the secretory activity of the subcommissural organ.Supported by Grant A/1095-1 from the International Foundation for Science, Sweden, to C.Y.; Grant I/63-476 from Volkswagen-Stiftung to E.R.; and Grant S-85-39 from the Dirección de Investigaciones, Universidad Austral de Chile  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号