首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation by thioredoxin of shikimate kinase from spinach chloroplasts   总被引:2,自引:0,他引:2  
The activity of shikimate kinase (EC 2.7.1.71) from spinach ( Spinacia oleracea L.) chloroplasts was increased up to 8.5-fold by addition of thioredoxin and dithio-threitol.  相似文献   

2.
3.
Experiments were performed on the first and second internodes and 4-cm-long apical segments of main roots of pea (Pisum sativum L.) seedlings, grown in the light and decapitated above the second node on the seventh day after seed germination. Endogenous phytohormones were measured by the enzyme-linked immunosorbent assay during three days after decapitation of seedlings. The IAA level in the internodes decreased 2–3 times on the second day after decapitation of seedlings while the cytokinin level increased 5–6 times for zeatin and zeatin riboside (Z and ZR) and 1.5–2 times for isopentenyl adenine and isopentenyl adenosine (IP and IPA). In contrast to internodes, the IP and IPA contents in the roots of decapitated seedlings did not change, but the levels of Z and ZR increased 1.5–2 times compared to intact plant roots. The IAA level in the apical region of root remained almost unchanged after the removal of shoot apex. It was concluded that the apical meristem of the main root is not the site of the cytokinin response to the auxin signal coming from the stem apex and that a slight accumulation of Z and ZR after decapitation is due to upper zones of the root. There was no difference in the content of gibberellin-like substances between the internodes of intact and decapitated seedlings. However, the content of gibberellins (GA) in the root tip decreased after decapitation of seedling, which suggests an essential role of apical bud in supplying the root with GA and/or intermediates for their biosynthesis.  相似文献   

4.
Aromatic amino acid metabolism during organogenesis in rice callus cultures   总被引:1,自引:0,他引:1  
The activity during root and shoot initiation of key enzymes involved in aromatic amino acid metabolism was examined in rice ( Oryza sativa L. cv. Bala) callus cultures. Increased activities of the enzymes quinate:NAD+ oxidoreductase (EC 1.1.1.24), shikimate kinase (EC 2.7.1.71), chorismate mutase (EC 5.4.99.5), anthranilate synthase (EC 4.1.3.27) and tryptophan synthetase (EC 4.2.1.20) were noticed in organ-forming callus compared to proliferating callus of rice, especially prior to the visible manifestation of form. These results suggest a correlation between organogenesis and the aromatic amino acid pathway.  相似文献   

5.
6.
Trypsin inhibitors from winter pea seeds (c.v. Frilene) have been purified by ammonium sulfate precipitation, gel filtration, and anion and cation exchange chromatography and shown to consist of six protease inhibitors (PSTI I, II, III, IVa, IVb, and V). Their molecular weights were determined by electrospray mass spectrometry as 6916, 6807, 7676, 7944, 7848, and 7844 D, respectively, and the sequences of the first 20 N-terminal amino acid residues of these six inhibitors were found to be identical. The complete amino acid sequence of PSTI IVa was determined. This protein comprises a total of 72 residues and has 14 cysteines, all involved in disulfide bridges. Comparison of the sequence of PSTI IVa with those of other leguminous Bowman-Birk type inhibitors revealed that PSTI could be classified as a group III inhibitor, closely related toVicia faba andVicia angustifolia inhibitors.  相似文献   

7.
The role of jasmonic acid (JA) in plant wounding response has been demonstrated. However, the source of JA in wound signaling remains unclear. In the present study, pea seedlings were used as material to investigate the systemic induction of JA and the activation of lipoxygenase (LOX)-dependent octadecanoid pathway upon wounding. The results showed that endogenous JA could induce two peaks in the wounded leaves and the stalks, while only one peak in the systemic leaves.LOX activity and its protein amount were also induced and the stimulation mainly occurred in the late phase, while one peak of induction was present after pretreatment with JA. Applied nordihydroguaiaretic acid (NDGA), an inhibitor of LOX activity, only inhibited the induction of JA in the late phase, and the resistance of pea was impaired. Furthermore, 13(S)-hydroperoxy-9(Z), 11 (E)-octadecadienoic acid (13(S)-H(P)ODE) was confirmed to be the main product of LOX throughout the experimental time. In addition, immunocytochemical analysis also revealed the occurrence of JA biosynthesis and transport upon wounding. These results demonstrated that wound-induced JA in wounded leaves resulted from Its biosynthesis and conversion from its conjugates, while in systemic leaves resulted from its transport and biosynthesis; and proved that the LOX pathway was vital to the wound-induced defense response involved in JA biosynthesis.  相似文献   

8.
9.
Endogenous phenolic compounds (PC) affecting Rhizobium leguminosarum bv. viceae propagation were isolated from the roots of etiolated pea (Pisum sativum L.) seedlings before and within one or two day after inoculation. It was established that, during the first day after inoculation, PC-induced stimulation of bacterial growth in roots was replaced by its inhibition, which was somewhat more pronounced at 8°C. The ratio between PC fractions was also changed during the first day after inoculation, especially strongly at low temperature; and this was evidently the cause for Rhizobium growth inhibition in root cells.  相似文献   

10.
11.
12.
The role of jasmonic acid (JA) in plant wounding response has been demonstrated. However, the source of JA in wound signaling remains unclear. In the present study, pea seedlings were used as material to investigate the systemic induction of JA and the activation of lipoxygenase (LOX)-dependent octadecanoid pathway upon wounding. The results showed that endogenous JA could induce two peaks in the wounded leaves and the stalks, while only one peak in the systemic leaves. LOX activity and its protein amount were also induced and the stimulation mainly occurred in the late phase, while one peak of induction was present after pretreatment with JA. Applied nordihydroguaiaretic acid (NDGA), an inhibitor of LOX activity, only inhibited the induction of JA in the late phase, and the resistance of pea was impaired. Furthermore, 13(S)- hydroperoxy-9(Z), 11 (E)-octadecadienoic acid (13(S)-H(P)ODE) was confirmed to be the main product of LOX throughout the experimental time. in addition, immunocytochemical analysis also revealed the occurrence of JA biosynthesis and transport upon wounding. These results demonstrated that wound-induced JA in wounded leaves resulted from its biosynthesis and conversion from its conjugates, while in systemic leaves resulted from its transport and biosynthesis; and proved that the LOX pathway was vital to the wound-induced defense response involved in JA biosynthesis.  相似文献   

13.
对36个引自加拿大的豌豆品种(系)进行抗白粉病表型和标记基因型鉴定,明确了豌豆品种Cooper和Tara白粉病抗性等位基因。苗期接种了2个不同地理来源的豌豆白粉病菌分离物,32个品种(系)对2个分离物均表现为免疫;品系MP1818-2对云南白粉菌分离物EPYN免疫,但对北京分离物EPBJ感病;其余3个品种对2个分离物均感病。4个与豌豆抗白粉病基因er1连锁的SCAR标记将36个豌豆品种(系)区分为5个标记基因型。与野生型PsMLO1基因序列比较发现,豌豆品种Cooper和Tara的PsMLO1候选基因均在680 bp处发生C变G的单核苷酸突变。  相似文献   

14.
Portions of the shoot system from young light-grown pea (Pisum sativum L.) seedlings were excised and circumnutation studied using time-lapse cinematography. Removal of the youngest leaf or shoot tip as well as ringing the stem with 20 mM triiodobenzoic acid severely restricted circumnutation. Treating the stump of the excised leaf with lanolin containing 10?4 M indole-3-acetic acid or replacing the leaf with an artificial aluminum leaf both partially restored circumnutation. When the leaf was replaced with both auxin and an artificial leaf circumnutation continued at approximately the rate of the intact plant. This graphically shows the involvement of both auxin and gravitropism in circumnutation.  相似文献   

15.
The sucrose content in both potato tubers and sweet potato roots was considerably increased by gamma-irradiation. The maximum increase was achieved by an irradiation dose of 3 to 4 kGy for potatoes and 0.8 to 2 kGy for sweet potatoes. Cooling treatment (15°C, 2 weeks) for sweet potato roots also enhanced the sucrose content (almost 2 times) but was not additive to the irradiation treatment; the maximum sucrose content in irradiated sweet potato roots was in the range of 7 to 12% irrespective of the cooling treatment, depending on the variety of sweet potatoes. Irradiation made the sucrose content in the roots 2 to 4 times higher.  相似文献   

16.
代谢工程从20世纪90年代初期发展至今已有近30年历史,对微生物菌种改良和选育工作起到了极大的推动作用.芳香族化合物是一类可以通过微生物发酵生产的化学品,广泛应用于医药、食品、饲料和材料等领域.利用代谢工程手段对莽草酸和芳香族氨基酸合成途径进行理性改造,微生物细胞可以定向地大量积累人们需要的各种芳香族化合物.笔者对近3...  相似文献   

17.
Under in vitro conditions, the fatty acid synthesis from labelled substrates was studied in the leucoplasts isolated from developing seeds of Brassica campestris L. The rate of fatty acid synthesis with Na-(1-14C) acetate was higher at lower concentrations (up to 1 mM). However, with 14C(U)-D-glucose, the rate was higher at higher concentrations (3–4 mM) at all the three stages of seed development. ATP and NAD(P)H were absolutely required in acetate utilization. Even for glucose utilization, the exogenous supply of ATP and NAD(P)H was required. At the early stage of seed development, the maximum reduction in labelled glucose and acetate utilization for fatty acid synthesis was observed with pyruvate and glucose, respectively. However, at mid-early and mid-late stages, maximum reduction in their utilization for fatty acid synthesis was observed with glc-6-P. This suggests a shift in the utilization of substrates for fatty acid synthesis during the development of seeds probably via different translocators activated at different stages.  相似文献   

18.
19.
茉莉酸类物质(JAs)是新确认的一类广泛存在于植物体内的内源激素,在植物的生长发育、应激反应和次生代谢过程中起着重要的调控作用。该文主要概述了植物中茉莉酸类物质的生物合成途径、各关键酶的生理作用及其在植物次生代谢工程等方面的研究进展,并探讨了茉莉酸类物质的潜在应用价值。  相似文献   

20.
目的:改造毕赤酵母使其异源合成类黄酮生物合成途径的重要中间体肉桂酸、对香豆酸,并优化前体芳香族氨基酸生物合成途径以提高毕赤酵母的生产能力。方法:在毕赤酵母GS115中利用乙醇诱导型人工转录系统表达Rhodotorula glutinis来源的苯丙氨酸解氨酶,并在该重组菌株中分别过表达胞内芳香族氨基酸生物合成途径中的关键酶或其突变体以进行优化。结果:异源表达苯丙氨酸解氨酶可使毕赤酵母将自身产生的L-苯丙氨酸、L-酪氨酸转化为肉桂酸(38.8 mg/L)、对香豆酸(34.2 mg/L),而通过过表达相关酶进行优化,最终肉桂酸和对香豆酸的产量分别达到124.1 mg/L和302.0 mg/L。结论:利用新的异源宿主毕赤酵母成功合成了肉桂酸、对香豆酸,并对胞内的芳香族氨基酸生物合成途径进行了优化,表明毕赤酵母具有生产黄酮类化合物的应用潜力,也为其他芳香族氨基酸衍生物或植物化合物在毕赤酵母中的异源合成奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号