首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用组成玉米异染色质钮的180-bp重复序列和TR-1元件以及45S rDNA对玉米自交系F107、GB57、二倍体多年生类玉米及其远缘杂交后代的染色体进行荧光原位杂交,确定了3种重复序列在亲本染色体上的分布;同时对远缘杂交后代进行了细胞学鉴定,通过荧光信号在染色体上的位置,证实远缘杂交后代中异源种质的染色体来源;讨论了异染色质钮重复序列对玉米和其野生种杂交后代外源染色体整合和染色体行为等方面研究的应用。  相似文献   

2.
Chilling tolerance was increased in suspension‐cultured cells and seedlings of maize (Zea mays L. cv ‘Black Mexican Sweet’) grown in media containing glycinebetaine (GB). A triphenyl tetrazolium chloride (TTC) reduction test indicated that after a 7 d chilling period at 4 °C, cells treated with 1 mm GB at 26 °C for 1 d had a survival rate (30%) that was twice as high as that of untreated controls. The addition of 2·5 m M GB to the culture medium resulted in maximum chilling tolerance (40%). The results of a cell regrowth assay were consistent with viability determined by the TTC method. In suspension‐cultured cells supplemented with various concentrations of GB, accumulation of GB in the cells was proportional to the GB concentration in the medium and was saturated at a concentration of 240 μ mol (g DW) ? 1. The degree of increased chilling tolerance was positively correlated with the level of GB accumulated in the cells. The increased chilling tolerance was time‐dependent; i.e. it was first observed 3 h after treatment and reached a plateau after 14 h. Feeding seedlings with 2·5 m M GB through the roots also improved their chilling tolerance, as evidenced by the prevention of chlorosis after chilling for 3 d at 4 °C/2 °C. Lipid peroxidation, as expressed by the production of malondialdehyde, was significantly reduced in GB‐treated cells compared with the untreated controls during chilling. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation of the cell membranes in the presence of GB.  相似文献   

3.
Knobs are blocks of heterochromatin present on chromosomes of maize (Zea mays L.) and its relatives that have effects on the frequency of genetic recombination, as well as on chromosome behavior. Knob heterozygosity and instability in six maize inbred lines and one Z. diploperennis Iltis Doebley line were investigated using the fluorescence in situ hybridization (FISH) technique with knob-associated tandem repeats (180 bp and 350 bp (TR- 1)) as probes. Signals of seven heterozygous knobs containing 180- bp repeats and of one heterozygous knob containing TR- 1 were captured in chromosomes of all materials tested according to the results of FISH, which demonstrates that the 180-bp repeat is the main contributor to knob heterozygosity compared with the TR- 1 element. In addition, one target cell with two TR- 1 signals on one homolog of chromosome 2L, which was different from the normal cells in the maize inbred line GB57, was observed, suggesting knob duplication and an instability phenomenon in the maize genome.  相似文献   

4.
Chilling‐induced photosynthetic impairment was examined in leaves of maize (Zea mays L.) seedlings of two cultivars, one adapted to western Europe and one adapted to Mexican highlands. Three experiments were performed in a controlled environment. The effects of chilling night temperatures, of chilling at high light intensity and of variable chilling day temperatures on photosynthetic parameters, were evaluated. Chilling in the dark period resulted in stomatal limitation of net photosynthesis. Chilling at moderate to high light intensities caused chilling‐dependent photoinhibition of CO2 uptake. Photobleached maize leaves did not resume normal photosynthetic function. Maize cv. Batan 8686 from the highlands of Mexico was less susceptible to photosynthetic damage than maize cv. Bastion adapted for cultivation in W. Europe, when exposed to chilling night temperatures, or to mild chilling photoinhibitory conditions.  相似文献   

5.
Knobs are blocks of heterochromatin present on chromosomes of maize (Zea mays L.) and its relatives that have effects on the frequency of genetic recombination, as well as on chromosome behavior.Knob heterozygosity and instability in six maize inbred lines and one Z. diploperennis Iltis Doebley line were investigated using the fluorescence in situ hybridization (FISH) technique with knob-associated tandem repeats (180 bp and 350 bp (TR-1)) as probes. Signals of seven heterozygous knobs containing 180-bp repeats and of one heterozygous knob containing TR- 1 were captured in chromosomes of all materials tested according to the results of FISH, which demonstrates that the 180-bp repeat is the main contributor to knob heterozygosity compared with the TR-1 element. In addition, one target cell with two TR-1 signals on one homolog of chromosome 2L, which was different from the normal cells in the maize inbred line GB57,was observed, suggesting knob duplication and an instability phenomenon in the maize genome.  相似文献   

6.
随着畜牧业的发展 ,广东玉米 (ZeemaysL .)的需求量也日增 ,发展玉米生产日益受到重视。引进优良品种是解决问题的重要途径之一。近几年来巴西玉米生产发展很快 ,由玉米进口国变为出口大国 ,玉米大面积高产稳产 ,其中重要的原因之一是培育出了一系列新的优良品种。巴西和广东地理纬度相似 ,同处热带亚热带 ,引种巴西的优良玉米品种理应在优先考虑的范围。气候生态条件是引种的关键因素之一。虽然广东和巴西的地理纬度相近 ,但地理纬度只是影响气候的因素之一 ,气候还受其它多种因素的影响。通过分析两地的气候特点及其对玉米生长发…  相似文献   

7.
铅和镉复合胁迫下玉米对镉吸收特性   总被引:3,自引:1,他引:3  
在盆栽条件下,以富友1号玉米品种为供试试材,研究了铅、镉复合胁迫下玉米对镉的吸收特性。结果表明,复合污染条件下,镉在玉米体内分布的一般规律是根>下叶>茎>上叶>籽粒,且植株各部位含镉量普遍高于镉单子污染,但随土壤中投放铅浓度的增加(0~540 mg.kg-1),植株体内各部位含镉量呈先升高后下降趋势。从玉米的生育进程来看,玉米各部位镉含量分配规律是拔节期>开花期>成熟期(上叶除外)。  相似文献   

8.
The effect of irradiance on changes in photosynthesis, free amino acids and polyamines was investigated. Two-week-old maize ( Zea mays L.) plants were chilled at 5°C in the light (250 μmol m−2 s−1 PAR) or dark. The chlorophyll fluorescence ratio, Fv/Fm, decreased in the light by ca 50% but did not change in the dark. Similarly to the Fv/Fm, there was no change in the transpiration rate or the stomatal conductance in the dark, while these parameters decreased by ca 55% in the light. The net photosynthesis rate declined in both cases, but to a far greater extent in the light (73%) than in the dark (40%). The intercellular CO2 partial pressure increased by ca 50% in all cases. The free amino acid contents increased compared to the control during the cold treatment. In most cases this increase was more pronounced in the light than in the dark. There was a continuous increase in the putrescine level, which was more pronounced in the light than in the dark. The spermidine content increased one and a half times after one day in the light but decreased by 70% in the dark compared to the control values. From the second day a 50% decline in the spermidine content was observed in the light and an 80% decline in the dark. These results suggest that light has an influence not only on the photosynthetic processes during chilling stress but also on other stress markers such as polyamines and free amino acids.  相似文献   

9.
Abstract. Seedlings of Zea mays L. were grown in the dark at 27°C. Four-day-old seedlings were then exposed for 3 days to solutions equilibrated with gas mixtures to give O2 concentrations between 0.02 and 0.25 mol m?3. Root growth was impaired just as severely at 0.06 as 0.02 mol O2 m?3 while growth at 0.16 mol O2 m?3 was about the same as in solutions in equilibrium with air (0.25 mol O2 m?3). Growth of young seedlings at low O2 concentrations was inhibited to the same extent in nutrient solution and 0.5 ml m?3 CaCl2, showing that the adverse effect of O2 deficits on growth was not due to less uptake of inorganic nutrients. Furthermore, at low O2 concentrations neither exposure of the shoots to a relative humidity of 100% (26.0 g H2O m?3) nor excision of the entire shoot enhanced root growth relative to that in plants with shoots at a relative humidity of 50% (13.0 g H2O m?3). Therefore, for these seedlings growing in the dark, impairment of root growth at low O2 concentrations was not a consequence of water deficits in the shoot or of other shoot-root interactions. Total soluble sugars and amino acid concentrations were generally greater at low (0.02–0.06 mol O2m?3) than at high O2 concentrations (0.16–0.25 mol O2 m ?3). This applied specifically to the root apices (0–2 mm) and expanding (2–15 mm) tissue except in some experiments where sugar concentrations in expanding tissue were slightly greater at high than at low O2 concentrations. Critical O2 pressures for respiration of excised root segments were approximately 0.117 and 0.065 mol O2 m?3 in the expanding and expanded zones of the roots, respectively. In contrast, the critical O2 pressure exceeded 0.20 mol O2 m?3 in the apex, suggesting that O2 supply for metabolic processes is most likely to be sub-optimal in this zone. Our results show clearly that the adverse effects of low O2 concentrations are unlikely to be a consequence of substrate shortage for either respiration or synthesis of macromolecules; low rates of ATP regeneration in growing root tissues are the logical cause for impaired growth in young seedlings while they are being sustained by seed reserves.  相似文献   

10.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   

11.
We quantified the structural changes accompanying cellular differentiation in root caps of Zea mays cv. Ageotropic to determine the developmental basis for the nongraviresponsiveness of their primary roots. Cells of the calyptrogen and columella of primary roots of the ageotropic mutant have structures indistinguishable from those of caps of primary roots of Z. mays cv. Kys the graviresponsive, wild-type parent of Z. mays cv. Ageotropic. However, the relative volumes of dictyosomes, dictyosome-derived vesicles and starch in the outermost peripheral cells of wild-type roots were significantly lower than were those in peripheral cells of mutant roots. This corresponds to a dramatic accumulation of starch and mucilage-filled vesicles in peripheral cells of mutant roots. Cellular differentiation in root caps of graviresponsive seminal roots of the Ageotropic mutant resembled that of primary and seminal roots of the wild-type cultivar, and differed significantly from that of primary roots of the mutant. We conclude that the mutation that blocks secretion of mucilage from peripheral cells of Ageotropic roots: (1) expresses itself late in cellular differentiation in root caps; (2) is expressed only in primary (but not seminal) roots of the Ageotropic mutant; and (3) is consistent with malfunctioning dictyosomes and dictyosome-derived vesicles being the cellular basis for agravitropism of primary roots of this mutant.  相似文献   

12.
The effects of low temperature on the synthesis and stability of the 32 kDa D1 protein of photosystem II were investigated in chloroplasts isolated from maize (Zea mays cv. LG11) leaves. The synthesis of D1 by intact chloroplasts in vitro was strongly dependent on temperature; the Q10 for the initial rate of incorporation of [35S]-methionine into D1 was ca. 2.6 over the range 13–25°C. The synthesis of other thylakoid polypeptides exhibited a similar temperature dependence, whilst synthesis of stromal proteins was considerably less temperature-dependent, with the exception of two polypeptides of ca. 56 and 59.5 kDa. The stability of newly-synthesized D1 in the thylakoid membranes was dependent both on the temperature at which the plants were grown and on the temperature during the pulse-labelling period when the protein was synthesized. In chloroplasts isolated from maize leaves grown at 25°C, D1 that was synthesized and assembled at 25 °C in vitro was rapidly degraded during the chase period. At lower chase temperatures the protein was more stable. When chloroplasts from 25°C-grown leaves were pulse-labelled at 13°C, the stability of D1 was markedly enhanced at all temperatures during the chase period. This effect was even more pronounced in chloroplasts isolated from plants grown at 14°C. The implications of these results are discussed with regard to the ability of maize to recover from photoinhibitory damage at low temperatures.  相似文献   

13.
The effects of various environmental conditions on the initiation of tassel branches (NTB) and spikelet‐pairs (NSP) were examined in the stress‐sensitive maize inbred F53. Chilling induced the most important effect, with a dramatic decrease in both NTB and NSP, provided it was applied at the end of the vegetative phase and start of the floral transition phase. The primary cause of chilling‐induced abortion of the tassel branches could be oxidative stress in the leaves, since lowering light irradiance during chilling greatly reduced the effect of cold. The comparison of inbreds F53 and F2 revealed that both genotypes exhibited a similar period of cold sensitivity at the floral transition phase, although F2 was considered from field observations as a stress‐insensitive genotype (at least for tassel development). However, our results also showed a chilling acclimation response in inbred F2 but not in inbred F53. The similarities with the work by Lejeune & Bernier (1996 Plant, Cell and Environment 19, 217–224.) concerning the effect of chilling on ear initiation in the sensitive inbred, B22, are emphasized.  相似文献   

14.
Cold-induced depolymerization of cortical microtubules were examined in suspension culture cells of corn (Zea mays L. cv Black Mexican Sweet) at various stages of chilling. In an attempt to determine whether microtubule depolymerization contributes to chilling injury, experiments were carried out with and without abscisic acid (ABA) pretreatment, since ABA reduces the severity of chilling injury in these cells. Microtubule depolymerization was detectable after 1 h at 4°C and became more extensive as the chilling was prolonged. There was little chilling injury after 1 d at 4°C in either ABA-treated or non-ABA-treated cells. After 3 d at 4°C, there was about 26% injury for ABA-treated and 40% injury for non-ABA-treated cells, as evaluated by 2,3,5-triphenyl-tetrazolium chloride reduction and by regrowth. After 1d at 4°C, less than 10% of cells retained full arrays of microtubules in both ABA-treated and non-ABA-treated cells, the remainder having either partial arrays or no microtubules. After 3d at 4°C, about 90% of cells showed complete or almost complete depolymerization of microtubules in both ABA-treated and non-ABA-treated cells. ABA did not stabilize the cortical microtubules against cold-induced depolymerization. In about 66% of ABA-treated cells and 57% of non-ABA-treated cells that had been held at 4°C for 3d, repolymerization of cortical microtubules occurred after 3h at 28°C. These results argue against the hypothesis that depolymerization of cortical microtubules is a primary cause of chilling injury.  相似文献   

15.
壳聚糖对镉胁迫下玉米幼苗叶片AsA-GSH循环的调控效应   总被引:2,自引:0,他引:2  
以玉米(Zea mays L.)品种‘郑单958’为实验材料,分析外施壳聚糖对镉胁迫下玉米幼苗生物量、叶片镉含量、叶片超氧阴离子(O2·-)产生速率和过氧化氢(H2O2)的含量,以及抗坏血酸-谷胱甘肽(AsA-GSH)循环中抗氧化酶的活性及抗氧化物含量的影响。结果显示,随着镉胁迫时间的延长,玉米幼苗发生氧化胁迫,叶片抗氧化酶(APX、GR、DHAR、MDHAR)活性和抗氧化物(AsA、GSH)的含量降低,镉积累过量会抑制玉米幼苗的生长。施加壳聚糖可以降低镉胁迫下玉米幼苗叶片O2·-的产生速率和H2O2含量,提高上述抗氧化酶活性和抗氧化物的含量,促进AsA和GSH的再生,维持细胞的氧化还原状态,促进玉米幼苗的生长。研究结果表明壳聚糖处理后玉米幼苗保持了较高的AsA-GSH循环运作效率,提高了抗氧化能力,可有效缓解镉胁迫对玉米幼苗生长的抑制。  相似文献   

16.
玉米化感物质异羟肟酸的研究进展   总被引:7,自引:1,他引:7  
介绍了异羟肟酸在玉米植株中的分布和玉米根系分泌物中异羟肟酸的分析方法.丁布(DIM-BOA)是玉米植株中含量最大的异羟肟酸.不同玉米品种之间异羟肟酸含量的差异很大.种子不含异羟肟酸;但萌发后其含量迅速增加,在萌芽几天后的幼苗植株其含量达最大值,随后逐渐下降;在玉米生长发育的不同时期,幼嫩叶片内异羟肟酸含量始终较高;地上部分异羟肟酸的浓度高于根系.植株异羟肟酸的浓度受生长环境条件影响显著,在紫外辐射、黑暗条件或水分胁迫下其含量明显增加.在各种禾谷类作物中,玉米根系分泌物内含异羟肟酸较高;铁的存在能显著增加玉米根系分泌物中异羟肟酸的含量.  相似文献   

17.
Relationship between iron chlorosis and alkalinity in Zea mays   总被引:4,自引:0,他引:4  
Mengel, K. and Geurtzen, G. 1988. Relationship between iron chlorosis and alkalinity in Zea mays . - Physiol. Plant. 72: 460–465.
Maize ( Zea mays L. cv. Anjou 21) grown in nutrient solution with Fe-EDTA and with nitrate as the sole nitrogen source showed typical Fe-chlorosis symptoms after a growth period of 14–21 days. Alkalinity in roots, stems and leaves of the chlorotic plants was high. Transferring the chlorotic plants from the nitrate-containing nutrient solution to a solution of (NH4)2SO4 resulted in a regreening of leaves within 2–3 days which was associated with a decrease in solution pH, a decrease in alkalinity of plant parts, a translocation of Fe from roots to tops and a release of Fe into the outer solution. Similar effects were obtained when Fe chlorotic plants were transferred to a dilute HO solution with pH 3.5.
Spraying chlorotic leaves with indoleacetic acid or with fusicoccin led also to a regreening of leaves without having a major effect on leaf alkalinity.
Interpretation of the experimental results is based on the assumption that nitrate as sole N source leads to a high pH level in the apoplast resulting in the precipitation of Fe compounds, probably Fe oxide hydrate. Ammonium nutrition has the reverse effect since it lowers the apoplast pH and this can result in the dissolution of Fe compounds. Application of indoleacetic acid as well as fusicoccin supposedly stimulates the proton pumps in the plasmalemma of the leaf tissue. The resulting decrease in apoplast leaf pH in the microenvironment also leads to a dissolution of Fe compounds in the apoplast and thus promotes the uptake of Fe by the symplasm.  相似文献   

18.
玉米单染色体的分离和体外扩增   总被引:25,自引:0,他引:25  
胡赞民  党本元 《遗传学报》1998,25(6):545-550
建立了玉米单染色体的分离及体外扩增的方法。取95%乙醇固定后经果胶酶和纤维酶酶解的根尖制备染色体标本,用自制的微细玻璃针在倒置显微镜下挑取目的染色体。染色体DNA经Sau3A酶切后与人工合成的Sau3A连接接头连接,经两次PCR扩增获得足以用于构建单染色体DNA文库的扩增产物。片段大小为0.3~5kb,多数为0.5~3.5kb.与前人研究方法相比,所需底物量少(只需1条染色体),扩增片段大,为植物中小型染色体分离、体外扩增进而进行单染色体DNA文库构建奠定了基础。  相似文献   

19.
The relationship between susceptibility to photoinhibition, zeaxanthin formation and chlorophyll fluorescence quenching at suboptimal temperatures was studied in chilling-sensitive maize and in non-acclimated and cold-acclimated Oxyria digyna , a chilling-tolerant plant of arctic and alpine habitats. In maize, zeaxanthin formation was strongly suppressed by chilling. Zeaxanthin formed during preillumination at 20°C did not protect maize leaves from photoinhibition during a subsequent high-light, low-temperature treatment, as judged from the ratios of variable to maximal fluorescence, Fv/Fm. However, such preillumination significantly increased non-photochemical quenching (qN) at low temperatures, mainly due to an enhancement of the fast-relaxing qN component (i.e., of energy-dependent quenching. qE). In O. digyna , cold-acclimation resulted in an increased zeaxanthin formation in the temperature range of 2.5–20°C. Cold-acclimation substantially decreased the susceptibility towards photoinhibition at 4°C, but qN remained nearly unchanged between 2 and 38°C, as compared to control plants. Effects of cold acclimation on photosynthesis, photochemical quenching and quantum efficiency of photosystem II were small and indicated a slight amelioration only of the function of the photosynthetic apparatus at suboptimal temperatures (2–20°Ct. I) is concluded, that the xanthophyll cycle is strongly influenced by cold acclimation, while effects on the photosynthetic carbon assimilation only play a minor role in O. digyna.  相似文献   

20.
Ethylene production by primary roots of 72–h-old intact seedlings of Zea mays L. cv. LG11 was studied under ambient and sub-ambient oxygen partial pressures (pO2) using a gas flow-through system linked to a photoacoustic laser detector. Despite precautions to minimize physical perturbation to seedlings while setting-up, ethylene production in air was faster during the first 6h than later, in association with a small temporary swelling of the roots. When roots were switched from air (20–8kPa O2) to 3 or 5kPa O2 after 6h, ethylene production increased within 2—3 h. When, the roots were returned to air 16 h later, ethylene production decreased within 2—3 h. The presence of 10kPa CO2 did not interfere with the effect of 3kPa O2. Transferring roots from air to 12–5kPa did not change ethylene production, while a reduction to 1 kPa O2 induced a small increase. The extra ethylene formed in 3 and 5 kPa O2 was associated with plagiotropism, swelling, root hair production, and after 72 h, increased amounts of intercellular space (aerenchyma) in the root cortex. Root extension was also slowed down, but the pattern of response to oxygen shortage did not always match that of ethylene production. On return to air, subsequent growth patterns became normal within a few hours. In the complete absence of oxygen, no ethylene production was detected, even when anaerobic roots were returned to air after 16 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号