首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leaflets of Phaseolus vulgaris contain crystals of calcium oxalate in the adaxial bundle sheath extensions. Most of the crystals accompany the lateral veins of third order. The average oxalate content of the leaves is 0.8% of dry weight. Some features of leaflet anatomy of Phaseolus and Canavalia are shown and the possible relation of anatomy to localization and development of crystals in each of the species is discussed. The majority of crystals in Phaseolus originate with the young leaflets newly unfolded. Calcium deficiency reduces number and size of crystals.  相似文献   

2.
首次研究了7种凤仙花属(ImpatiensL.)植物茎的解剖学及细胞组织中草酸钙结晶的特征.结果表明,7种凤仙花属植物茎的解剖学结构非常近似,而茎中草酸钙结晶特征则差异显著,7种凤仙花属植物茎中均有草酸钙针晶,根据草酸钙结晶形态特征的不同,将针晶分为3种类型,即针晶束、针晶簇和散针晶.其中,黄金凤、长角凤仙花、锐齿凤仙花和红纹凤仙花有针晶束分布,而湖北凤仙花、紫花黄金凤和窄萼凤仙花则无针晶束分布,只有针晶簇或散针晶分布;此外,针晶的形态、长度、排列方式及丰富程度等在不同的物种中亦有差异.草酸钙结晶特征对凤仙花属植物的分类具有一定的科学意义.  相似文献   

3.
Soluble and insoluble oxalate and insoluble calcium were measured in the leaves of Phaseolus vulgaris. The plants were grown in nutrient solutions with two different concentrations of calcium. Two developmental stages of the leaves were studied. Although the content of insoluble calcium differs widely according to leaf age and growth conditions, the percentage bound in crystals is nearly the same in all cases. In the growing leaves, concentrations of total oxalate are independent of calcium supply, thus, showing that the known rise in numbers of crystals, and of cells containing them, is not induced via oxalate biosynthesis. Fully expanded leaves contain more oxalate when grown in a nutrient solution with higher calcium concentration. Amounts of oxalate in percent of dry weight are similar to those given in the literature for other legume leaves.  相似文献   

4.
The distribution of calcium oxalate crystals in various conifer needles is visualized by light and electron microscopy. Such crystals occur (1) in the vascular bundle, either intracellularly in the xylem or phloem parenchyma, or extracellularly within the radial phloem walls; (2) extracellularly on the outside of the walls of mesophyll cells which face the intercellular spaces; (3) and finally as numerous small crystals within the cell walls of the epidermal cells, especially in the cuticular layer. The development and distribution of these apoplastic crystals is described in detail. Some hypotheses are finally presented for interpretations of these unusual patterns of the crystallization of Ca-oxalate outside the vacuole. Possible evolutionary aspects of this feature among the different conifer families are also discussed.  相似文献   

5.
Young plants of Phaseolus vulgaris were grown in nutrient solutions at different levels of calcium concentration. When the calcium concentration was low more palisade parenchyma and less extended bundle sheath was formed at the adaxial side of minor veins of the leaves as compared to leaves of plants grown with higher calcium supply. The number of calcium oxalate crystals in the bundle sheath extensions was positively correlated to the amount of calcium fed to the plants. The ion induces additional cell divisions in the bundle sheath extensions. A high supply of calcium leads to the formation of a second type of crystal in the bundle sheath.  相似文献   

6.
目的:探讨新疆地区维吾尔族和汉族草酸钙结石与钙敏感受体(calcium sensitive receptor,Ca SR)基因多态性之间的关系。方法:选择398例临床确诊泌尿系草酸钙结石患者(200例维吾尔族,198例汉族)和399例正常对照者(200例维吾尔族,199例汉族),应用Sna Pshot方法对Ca SR基因两位点(rs1042636,rs1801726)的基因型及等位基因频率进行检测,并分析其与草酸钙结石发病的相关性以及对血钙、24 h尿钙水平的影响。结果:各组2个位点的基因型分布均符合Hardy-Weinberg平衡。汉族结石组与汉族对照组及维吾尔族结石族与维吾尔族对照组rs1042636、rs1801726位点基因型分布及基因频率差异均无统计学意义(P0.05)。维吾尔和汉族rs1042636基因型及等位基因频率比较差异有统计学意义(P0.05),且维吾尔族人群携带rs1042636等位基因A的风险高于汉族人群(病例组中OR值=2.145,%95CI=[1.602~2.866],P0.01;对照组中OR值=1.773,%95CI=[1.332~2.359],P0.01),其中维/汉病例组中等位基因频率分别为A=278(69.5%)/204(51.5%),G=122(30.5%)/192(48.5%);维/汉对照组中等位基因频率分别为A=264(66.0%)/208(52.3%),G=136(34.0%)/190(47.7%)。而病例组和对照组rs1801726基因型频率差异无统计学意义(P0.05);汉族病例组、对照组发现GG+AG基因型较AA基因型有较高的尿钙水平(病例组:P=0.007和对照组:P=0.006),维吾尔族人群该位点与两项指标无相关性。结论:Ca SR基因2个基因位点rs1042636、rs1801726可能不是新疆地区维吾尔族和汉族草酸钙结石发病的危险因子,两族rs1042636基因多态性分布存在差异,rs1042636位点基因多态性能影响汉族人群尿钙排泄,可能汉族调节钙排泄的遗传因素之一。  相似文献   

7.
The occurrence and distribution of seven crystal types in 114 bark samples from 25 genera and 91 species, representing all four tribes of African genistoid legumes, are reported. The seven types are prismatic, druse (including irregular crystal clusters), navicular (including truncated navicular, here reported for the first time), spherical crystal cluster, styloid, crystal sand and acicular crystals in sheaf‐like aggregates. Unlike most studies, the elemental composition of the crystals was examined using X‐ray microanalyses. With the exception of acicular crystals, all crystals showed the typical peaks of calcium (sometimes accompanied by small amounts of magnesium). Acicular crystals in sheaf‐like aggregates were composed only of carbon and oxygen, indicating that they are organic and precipitate during drying or after fixation in alcohol. These crystals are found only in the two early‐diverging lineages of Podalyrieae (Cyclopia and Virgilia+Calpurnia clades), consistent with the phylogenetic pattern in the tribe (indicating a secondary loss). Navicular crystals are restricted to Podalyrieae and Crotalarieae. Prismatic crystals in bark are proposed to be the ancestral condition, with multiple losses (or reversals) in Podalyrieae, Crotalarieae and Genisteae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 620–632.  相似文献   

8.
Abstract: Ca oxalate crystal formation was examined in Pistia stratiotes L. leaves during excess Ca and Ca-deficient conditions. Pistia produces druse crystal idioblasts in the adaxial mesophyll and raphide idioblasts in the abaxial aerenchyma. Raphide crystals were previously found to grow bidirectionally, and here we show that Ca is incorporated along the entire surfaces of developing druse crystals, which are coated with membrane-bound microprojections. Leaves formed on plants grown on 0 Ca medium have fewer and smaller druse crystals than leaves formed under 5 mM Ca ("control") conditions, while raphide crystal formation is completely inhibited. When plants were moved from 0 to 15 mM ("high") Ca, the size and number of crystals in new leaves returned to (druse) or exceeded (raphide) control levels. High Ca also induced formation of druse, but not raphide, crystals in differentiating chlorenchyma cells. When plants were transferred from 15 mM Ca to 0 Ca, young druse crystals were preferentially partially dissolved. Oxalate oxidase, an enzyme that degrades oxalate, increased during Ca deficiency and was localized to the crystal surfaces. The more dynamic nature of druse crystals is not due to hydration form as both crystal types are shown to be monohydrate. Part of the difference may be because raphide idioblasts have developmental constraints that interfere with a more flexible response to changing Ca. These studies demonstrate that excess Ca can be stored as Ca oxalate, the Ca can be remobilized under certain conditions, and different forms of Ca oxalate have different roles in bulk Ca regulation.  相似文献   

9.
Calcium oxalate crystals have potential roles in plants as partof a defence mechanism against herbivores and/or in accumulatingexcess calcium. To date, these potential roles have been studiedindependently. In this experimental study the effects of calciumlevels and herbivory on the production of calcium oxalate crystals(i.e. druse, spherical crystal aggregates) were examined inseedlings of Sida rhombifolia. Seedlings were subjected to threecalcium levels (low, normal or high) and an artificial herbivorytreatment. Calcium levels and herbivory both affected densityof crystals in leaves. Leaves from seedlings grown in low calciumhad a greater crystal density than those grown in high calcium.Leaves from seedlings subjected to herbivory had a greater crystaldensity than those from seedlings not subjected to herbivory.This study provides additional evidence that calcium oxalatecrystal production depends not only on calcium levels but canalso be influenced by external pressures such as herbivory.In addition to their physiological role in plants, these resultssuggest that calcium oxalate crystals can also act as a defencemechanism against herbivores. Copyright 2001 Annals of BotanyCompany Calcium concentrations, calcium oxalate crystals, herbivory, Malvaceae, Sida rhombifolia  相似文献   

10.
BACKGROUND AND AIMS: Pistia stratiotes produces large amounts of calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. The potential involvement of Ca(2+) channels in Ca oxalate crystal formation by crystal idioblasts was investigated. METHODS: Anatomical, ultrastructural and physiological analyses were used on plants, fresh or fixed tissues, or protoplasts. Ca(2+) uptake by protoplasts was measured with (45)Ca(2+), and the effect of Ca(2+) channel blockers studied in intact plants. Labelled Ca(2+) channel blockers and a channel protein antibody were used to determine if Ca(2+) channels were associated with crystal idioblasts. KEY RESULTS: (45)Ca(2+) uptake was more than two orders of magnitude greater for crystal idioblast protoplasts than mesophyll protoplasts, and idioblast number increased when medium Ca was increased. Plants grown on media containing 1-50 microM of the Ca(2+) channel blockers, isradipine, nifedipine or fluspirilene, showed almost complete inhibition of crystal formation. When fresh tissue sections were treated with the fluorescent dihydropyridine-type Ca(2+) channel blocker, DM-Bodipy-DHP, crystal idioblasts were intensely labelled compared with surrounding mesophyll, and the label appeared to be associated with the plasma membrane and the endoplasmic reticulum, which is shown to be abundant in idioblasts. An antibody to a mammalian Ca(2+) channel alpha1 subunit recognized a single band in a microsomal protein fraction but not soluble protein fraction on western blots, and it selectively and heavily labelled developing crystal idioblasts in tissue sections. CONCLUSIONS: The results demonstrate that Ca oxalate crystal idioblasts are enriched, relative to mesophyll cells, in dihydropyridine-type Ca(2+) channels and that the activity of these channels is important to transport and accumulation of Ca(2+) required for crystal formation.  相似文献   

11.

The formation of biogenic fabrics in limestone by two fungi, Serpula himantioides and a polymorphic fungal isolate from limestone identified as a Cephalotrichum (syn. Doratomyces) sp., was investigated. The fungal cultures were grown in laboratory microcosms consisting of Carboniferous limestone and after 21 d incubation at 25°C, biomineralization of fungal filaments was observed. Environmental electron scanning microscopy (ESEM) and X-ray micro-analysis (EDXA) of crystalline precipitates on the hyphae of S. himantioides demonstrated that the secondary crystals exhibited different crystalline forms but were similar in elemental composition to the original limestone. Powder X-ray diffraction (XRD) of crystalline precipitates showed they were composed of a mixture of calcite (CaCO 3 ) and calcium oxalate monohydrate (CaC 2 O 4 · H 2 O). Analysis of crystals precipitated on the hyphae of the limestone isolate, using ESEM and EDXA, showed that the crystals exhibited similar morphological characteristics and elemental composition to the original limestone. XRD showed that they were composed solely of calcite (CaCO 3 ) or of calcite with some calcium oxalate dihydrate (CaC 2 O 4 · 2H 2 O). These results provide direct experimental evidence for the precipitation of calcite (CaCO 3 ) and also secondary mycogenic minerals, on fungal hyphae in low nutrient calcareous environments, and suggest that fungi may play a wider role in the biogeochemical carbon cycle than has previously been appreciated.  相似文献   

12.
The structure of cells with calcium oxalate crystals and their nelghbouring cells has been studied by light and transmission electron microscopy at different stages of bean leaf development. Plants were grown with varying calcium supply to identify a possible influence of calcium nutrition on cell structure. Crystals are formed inside the vacuole of already highly vacuolated cells of bundle sheath extensions. The membrane around the crystal vacuole is continuous with the plasmalemma. The crystal vacuole contains membraneous structures. In the fully expanded leaf the crystal becomes ensheathed by wall material. Chloroplasts of bundle sheath extension cells, with or without crystals, are smaller, with fewer membranes, and with much narrower stroma regions than those of the palisade parenchyma. There is a stage in the young leaf when only the bundle sheath extension cells without crystals have starch grains in their chloroplasts. As their number is lower in plants grown with high calcium supply this means that, in this case, less cells are competent for photosynthesis.  相似文献   

13.
14.
The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.  相似文献   

15.
In this study, Ca oxalate crystals were isolated from the leaves and X-ray diffraction identified them as weddelite in Crataegus pontica C. Koch, C. stevenii Polar., C. monogyna ssp. monogyna Jacq. in C. orientalis var. orientalis Pallas ex Bieb. both whewellite and weddelite crystals were found. Although there were some differences among the soluble and insoluble oxalate contents, they were not notable in the species of C. stevenii (10%; 18%), C. orientalis (12.4%; 15%), C. monogyna (12.9%; 13%), whereas in C. pontica the difference was so great with the lowest soluble (4%), and highest (28%) insoluble oxalate content. Crystals have tetragonal or prismatic shape in general but tetrahedral kinked and straight shapes were seen in C. orientalis, tetragonal aggregates in C. stevenii, and also pseudo-tetrahedral cordate (heart) shape were found in C. monogyna ssp. monogyna and C. pontica. As the crystal biomineralization is under genetic control, this characteristic hydration state of crystals of Crataegus orientalis var. orientalis must be important for systematic phylogenetics.  相似文献   

16.
Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense.  相似文献   

17.
Developing soybean seeds accumulate very large amounts of both soluble oxalate and insoluble crystalline calcium (Ca) oxalate. Use of two methods of detection for the determination of total, soluble, and insoluble oxalate revealed that at +16 d postfertilization, the seeds were 24% dry mass of oxalate, and three-fourths of this oxalate (18%) was bound Ca oxalate. During later seed development, the dry mass of oxalate decreased. Crystals were isolated from the seeds, and X-ray diffraction and polarizing microscopy identified them as Ca oxalate monohydrate. These crystals were a mixture of kinked and straight prismatics. Even though certain plant tissues are known to contain significant amounts of oxalate and Ca oxalate during certain periods of growth, the accumulation of oxalate during soybean seed development was surprising and raises interesting questions regarding its function.  相似文献   

18.
This study was to report and describe the formation of Ca oxalate crystals and to explore whether there is any correlation between their abundant formation and the ability of plant to uptake and accumulate high levels of toxic metals. Soil-grown Corchorus olitorius L. (Tiliaceae) seedlings were further grown in water culture in the presence of Cd, Pb, Cu, or Al (0–10 g/ml) for 20 days. Light and electron microscopic examinations revealed a large number of intracellular prismatic-shaped Ca oxalate crystals in both leaf and callus cells. Crystals were formed in the vacuole, a single large crystal being formed per cell. The crystal-containing cells differed in size and shape from crystal-free cells, they were rich in organelles, membranes, and vesicles and have dense cytoplasm, enlarged nucleus and modified starch-lacking plastids with few grana. These cells look highly active. Corchorus plants treated with Cd, Pb, Cu, and Al accumulated these metals to the levels several times higher than untreated plants. The contents of Pb, Cd, Al, and Cu in leaf tissues of plants grown in the presence of 5 g/ml of these metals were 10, 20, 25, and 40 times higher, respectively, than those in plants grown on media devoid of them. X-ray microanalysis of Ca oxalate crystals in leaves from plants exposed to 5 g/ml Cd, Pb, Al, or Cu indicated the incorporation only of Al into these crystals. Results of this paper suggest a possible contribution for Ca oxalate-crystal formation in sequestering and tolerance of at least some toxic metals.  相似文献   

19.
Background and Aims: Species of Araceae accumulate calcium oxalate in the form ofcharacteristically grooved needle-shaped raphide crystals andmulti-crystal druses. This study focuses on the distributionand development of raphides and druses during leaf growth inten species of Amorphophallus (Araceae) in order to determinethe crystal macropatterns and the underlying ultrastructuralfeatures associated with formation of the unusual raphide groove. Methods: Transmission electron microscopy (TEM), scanning electron microscopy(SEM) and both bright-field and polarized-light microscopy wereused to study a range of developmental stages. Key Results: Raphide crystals are initiated very early in plant development.They are consistently present in most species and have a fairlyuniform distribution within mature tissues. Individual raphidesmay be formed by calcium oxalate deposition within individualcrystal chambers in the vacuole of an idioblast. Druse crystalsform later in the true leaves, and are absent from some species.Distribution of druses within leaves is more variable. Drusesinitially develop at leaf tips and then increase basipetallyas the leaf ages. Druse development may also be initiated incrystal chambers. Conclusions: The unusual grooved raphides in Amorphophallus species probablyresult from an unusual crystal chamber morphology. There aremultiple systems of transport and biomineralization of calciuminto the vacuole of the idioblast. Differences between raphideand druse idioblasts indicate different levels of cellular regulation.The relatively early development of raphides provides a defensivefunction in soft, growing tissues, and restricts build-up ofdangerously high levels of calcium in tissues that lack theability to adequately regulate calcium. The later developmentof druses could be primarily for calcium sequestration.  相似文献   

20.
Objective: The aim of the study was to assess the influence of overweight and obesity on the risk of calcium oxalate stone formation. Research Methods and Procedures: BMI, 24‐hour urine, and serum parameters were evaluated in idiopathic calcium oxalate stone formers (363 men and 164 women) without medical or dietetic pretreatment. Results: Overweight and obesity were present in 59.2% of the men and in 43.9% of the women in the study population. Multiple linear regression analysis revealed a significant positive relationship between BMI and urinary uric acid, sodium, ammonium, and phosphate excretion and an inverse correlation between BMI and urinary pH in both men and women, whereas BMI was associated with urinary oxalate excretion only among women and with urinary calcium excretion only among men. Serum uric acid and creatinine concentrations were correlated with BMI in both genders. Because no association was established between BMI and urinary volume, magnesium, and citrate excretion, inhibitors of calcium oxalate stone formation, the risk of stone formation increased significantly with increasing BMI among both men and women with urolithiasis (p = 0.015). The risk of calcium oxalate stone formation, median number of stone episodes, and frequency of diet‐related diseases were highest in overweight and obese men. Discussion: Overweight and obesity are strongly associated with an elevated risk of stone formation in both genders due to an increased urinary excretion of promoters but not inhibitors of calcium oxalate stone formation. Overweight and obese men are more prone to stone formation than overweight women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号