首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ultrastructure of the flagellar apparatus in pre-inversion and inversion stages of Platydorina resembles that of Chlamydomonas in having 180° rotational symmetry and clockwise absolute orientation. Basal bodies are in a “V” configuration and connected by one distal and two proximal fibers. Alternating two- and four-membered microtubular rootlets are cruciately arranged. During maturation, the basal bodies rotate and separate, and 180° rotational symmetry is lost. Simultaneously, each proximal fiber detaches from one of the functional basal bodies, and the distal fiber detaches from both. The mature apparatus has widely separated and nearly parallel basal bodies. Flagellar orientation in Platydorina is completed just after inversion and a flattening of the colony called intercalation, resulting in the pairs of flagella of neighboring cells extending from the colony in opposite directions in an alternating fashion. Flagellar orientation and separated basal bodies minimize the interference between the flagella of neighboring cells. Basal bodies and rootlets of the two intercalated halves of a colony rotate, resulting in the effective strokes of the flagella of every cell being towards the colonial posterior. The flagella of each cell beat with an effective stroke in the direction of the two inner rootlets. The flagella have an asymmetrical ciliary type beat. The rotated, separated, and parallel basal bodies, together with the nearly parallel rootlets probably are adaptations for movement of this colonial volvocalean alga. The flagellar apparatus in immature stages of Platydorina lends support to the suggestion that the alga has evolved from a Chlamydomonas-like ancestor.  相似文献   

2.
Vegetative cells of Gonium pectorale have a fine structure similar to that of Chlamydomonas. In addition, three zones comprise an extracellular matrix; a fibrillar sheath and tripartite boundary surround individual cells, and a fragile capsule zone surrounds the entire colony. Cytokinesis is accomplished by a phycoplast and cleavage furrow. The flagellar apparatus of the immature vegetative cell of this colonial alga is similar to that of Chlamydomonas, but the basal bodies are slightly separated at their proximal ends. The four microtubular rootlets alternate between two and four members. During development, the basal bodies become further separated and nearly parallel. The distal fiber is stretched, but it remains attached to both basal bodies. At maturity, the basal bodies of peripheral cells of the colony have rotated in opposite directions on their longitudinal axes resulting in a displacement of the distal fiber to one side, an asymmetrical orientation of the rootlets and loss of 180° rotational symmetry. Central cells remain similar to Chlamydomonas in that basal bodies do not rotate, rootlets are cruciate, the distal fiber remains medially inserted and 180° rotational symmetry is conserved. A “pin-wheel” configuration of flagellar pairs and the orientation of parallel rootlets toward the colony perimeter probably accounts for the rotation of the colonies during forward swimming. In addition, these ultrastructural features support the traditional placement of G. pectorale as an intermediate between the unicellular Chlamydomonas and the more complex colonial volvocalean genera.  相似文献   

3.
The absolute configuration of the flagellar apparatus of biflagellate zoospores of Enteromorpha flexuosa (Wulfen ex Roth.) J. Agardh ssp. pilifera (Kütz.) Bliding was determined. Viewed from the anterior of the cell, the flagellar apparatus shows 180° rotational symmetry with a counter-clockwise absolute orientation of its components. In longitudinal sections, the posteriorly directed basal bodies form an angle of about 170°–180° to one another. A reduced striated distal fiber connects the two basal bodies. The cruciate microtubular rootlet system has a 4–2–4–2 alternation pattern. Striated microtubule-associated components (SMACs or system I-fibers) and rhizoplasts (or system II fibers) accompany the two-membered rootlets. Striated bands connect the proximal sheaths with the four-Membered rootlets. The bilobate terminal caps do not completely cover the proximal ends of the basal bodies. This is the first ultrastructural study of biflagellate zoospores in a member of the Ulvales.  相似文献   

4.
The overall appearance of the flagellar apparatus in the isogametes of Batophora oerstedii. J. Ag. is most like that which occurs in motile cells of the Ulvophyceae. Like other Ulvophyceae, the basal bodies overlap and are arranged in the 11/5 configuration, microtubular roots are arranged in a cruciate pattern and system II striated fibers are present. The basal body connective which generally lacks striation in the Ulvophyceae is clearly different in Batophora, being composed of two large non-striated halves which connect to the anterior surface of each basal body and are then connected to one another by a distinctly fibrous centrally striated region. This variation in the basal body connective and the presence of two posteriorly directed system II striated fibers is clearly different from homologous structures reported in siphonous green algae of the Caulerpales. Based upon these variations and similarities among flagellar apparatus components in siphonous green algae, it is suggested that the Dasycladales and Siphonodadales are more closely related to one another than to the Caulerpales.  相似文献   

5.
The ultrastructure of zoospores of Asterococcus superbus (Cienk.) Scherffel was studied to provide ultrastructural data relevant to the systematic position of the genus. Our results demonstrated that the motile cells of A. superbus were similar to those of the tetrasporalean algae, such as Tetraspora sp. and Tetrasporidium javanicum Moebius . The flagellar apparatus of A. superbus had the same clock-wise orientation of basal bodies and the V-shaped alignment of basal bodies as Tetraspora cylindrica (Wahlb.) Ag. and T. lubrica (Roth) Ag., but differed by having rhizoplasts . The motile cells of A. superbus displayed chlamydomonadal ultrastructure, similar to Chlamydomonas reinhardtii Dangeard , including the absolute configuration of the flagellar apparatus. The pyrenoid matrix in A. superbus, however , showed a large lateral invagination occupied by chloroplast stroma, a characteristic that has never been observed in Chlorophyta.  相似文献   

6.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

7.
The ultrastructure of Hymenomonas coronata Mills was reinvestigated to determine the microarchitecture of the flagellar apparatus. Cell morphology and flagellar apparatus structure are very similar to those of Pleurochrysis. Some important variations occur. First, a crystalline root (= compound root) is absent on microtubular root 1. Second, a two-stranded microtubular root emanates at a right angle from microtubular root 2. Third, a fibrous root emanates from the dorsal region between the basal bodies and extends to the cell's right, paralleling microtubular root 3. These similarities and variations in flagellar apparatus characters are discussed in reference to known variations in the Prymnesiophyta.  相似文献   

8.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

9.
The flagellar apparatus of Microthamnion kuet-zingianum Naegeli differs from, that of Chlamydomonas reinhardtii Dangeard in that the zoospores can autonomously orient their basal bodies for different types of swimming behavior, including forward, and backward progression with, stationary intervals. Reorientation of the basal regions of the flagella and of the basal bodies were documented by cinefilms and by stroboscopic and electron micrographs. Even when the flagella. were sheared off, the remaining stubs (containing the basal bodies) were capable of being reoriented, by the organism. Thus the mechanism of basal body reorientation cannot reside in the 9 + 2 flagellar shaft. Rather, the reorienting process involves a shortening or lengthening of the distal fiber and of the plasma membrane region overlying an anterior papilla. In their helical and spiral motions, the zoospores trace complicated, but surprisingly regular curves. Such motion might result from the inherent 3-dimensional structure and beat of the flagella. The eyespot has an invariable, highly asymmetric location within the cell in direct proximity with a specific microtubular band (MTE), but nevertheless may occur in either the anterior or posterior region of the chloroplast. Further, multiple eyespots may occur along the same side of MTE. This observation is consistent with the discovery (in Fucus sperm) that microtubules serve to align individual eyespot granules in eyespot-ontogeny. By this means the position of the eyespot within a cell could well be determined.  相似文献   

10.
Fluorescent labeling of the flagellar apparatus of Tetraselmis (Prasinophyceae) and Dunaliella (Polyblepharidaceae, Chlorophyceae) were successfully performed using fluorescein isothiocyanate–labeled lectins from Arachis hypogaea and Glycine maxima. These lectins specifically bound to the flagella and kinetosome of the cell but did not bind to the cell surface. Lectin binding on the flagellar apparatus remained constant under different culture media, temperatures, irradiances, cell division cycle, and culture aging. All the Tetraselmis and Dunaliella analyzed (five species, 20 clones) showed intense labeling of the flagellar apparatus. In contrast, no other species analyzed (46 clones of 25 species from four classes) showed binding to their flagellar apparatus. After the lectin treatment, many cells remained alive, and they were able to swim with the flagellar apparatus intensely labeled. The lectin binding indicates that the flagella and kinetosome of Tetraselmis are rich in Gal and GalNH2 moieties and that the flagella of Dunaliella are rich in Gal and GalNAc moieties. Apparently, this feature seems to be specific to these species.  相似文献   

11.
Photosystem II light-harvesting complexes were isolated from a number of ulvophycean algae. Some of these light-harvesting complexes displayed unusual features, most notably a high apparent molecular weight (ca. 58,000) when isolated by lithium doderyl sulfate polyarrylamide gel electrophoresis. Other ulvophycean light-harvesting complexes had a low-molecular weight (ca. 30,000). The distribution of the high-molecular weight complex was limited to certain members of the Caulerpales and Blastophysa rhizopus (Siphanocladales). Within the Caulerpales, there were also spectral differences between the high-molecular weight and low-molecular weight light-harvesting complex types. The differences in light-harvesting complexes in the Ulvophyceae suggest that there are two lines of evolution in the Caulerpales and that Blastophysa may be an intermediate between the Siphon-ocladales and the Caulerpales.  相似文献   

12.
The flagellar apparatus of Urospora penicilliformis (Roth) Aresch. is unique, or at least very unusual among green algae. The flagellar axonemes are rigid, and contain wing-like projections. There are no central microtubules in the most proximal part of the axoneme. The transition region contains a series of electron dense transverse lamellae rather than a single septum, and lacks a stellate pattern. There is no cartwheel pattern in the proximal part of the basal bodies. The latter are associated with four different types of fibrous elements: ascending striated fibers that attach to an electron dense plate in the papillar center, lateral striated fibers that parallel microtubular roots, fibrous elements that link adjacent basal bodies, and finally two massive striated fibers that descend into the cell, passing closely along the nucleus (system II fibers, or rhizoplasts). Each of the four microtubular flagellar roots is sandwiched between two system I striated structures. The roots are probably equal; they contain proximally four, and distally up to eight microtubules. Based on the zoospore flagellar apparatus, it is concluded that the multinucleate U. penicilliformis is related to the Ulvaphyceae. Finally, a possible explanation in functional terms is given for the peculiar external morphology and behavior of the zoospore.  相似文献   

13.
The three-dimensional structure of the flagellar apparatus of Dinobryon cylindrioum Imhof. (UTEX no. LB 2266) was determined using serial section reconstruction. Four microtubular rootlet systems (R1, R2, R3, and R4)and a rhizoplast are present, following the general pattern found in other chrysophytes. The R1 rootlet, containing seven microtubules, originates at the basal body of the long flagellum that bears mastigonemes (F1). The R1 rootlet forms an arc which curves in clockwise direction (when viewed from the anterior end of the cell) approximately halfway around the pit from which the short smooth flagellum (F2) emerges. Numerous microtubules cascade from the exterior-facing side of this rootlet to the tail of the cell. The R2 rootlet originates between the F1 and F2 basal bodies, is attached to the F1 basal body by a fibrous connection, and forms a clockwise arc above the R1 rootlet. This rootlet extends approximately one quarter of the way around the pit. The R3 rootlet system originates as a trough-shaped band of six microtubules spanning the distance between the proximal ends of the F1 and F2 basal bodies. The six-membered rootlet splits into two parts, designated R3 and R3. Both parts circle the pit in counter-clockwise direction, pass beneath the F2 basal body, and descend into the cell alongside the chloroplast. The R4 rootlet originates in fibrous material, passes diagonally over the top of the F2 basal body, forms a clockwise loop at least three quarters of the way around the pit to the interior of the R3 and R3 rootlets, and ends in the cytoplasm. Similarities of rootlet origins and other details of the flagellar apparatus of D. cylindricum with those of other heterokont organisms reinforce the idea that these organisms are phylogenetically related.  相似文献   

14.
Pterosperma cristatum Schiller, a member of the Pra-sinophyceae, was examined with light and electron microscopy with special attention on the absolute configuration of flagellar apparatus components and associated structures. This alga is characterized by asymmetrically arranged basal bodies, connecting fibers and microtubular roots. The microtubular root system is homologous with the cruciate root system, the so-called X-2-X-2 root system typical of non-charophycean green algae. Two ducts are associated with microtubular roots. A similar flagellar apparatus and duct system was found in two other prasinophyte genera, Pyramimonas and Halosphaera. The close phylogenetic affinity of these three genera is discussed.  相似文献   

15.
The three-dimensional structure of the flagellar apparatus of Uroglena americana Calkins (Uroglenopsis americana [Calkins] Lemmerman) was determined using serial section reconstruction. The three microtubular rootlet systems (R2, R3, and R4) follow the general pattern found in other chrysophytes. The R2 rootlet originates between the basal bodies of the mastigoneme-bearing long flagellum (F1) and the short smooth flagellum (F2) and is attached to the former by a fibrous connection. The R3 rootlet system originates as a trough-shaped band of six microtubules spanning the distance between the proximal ends of the F1 and F2 basal bodies. The six-membered rootlet splits into two parts (designated R3 and R3) which circle the depression from which the F2 flagellum emerges in counter-clockwise direction. These two rootlets pass beneath the F2 basal body and descend into the cell alongside the chloroplast. The R4 rootlet originates in fibrous material which passes diagonally over the F2 basal body, forms a clockwise loop about three-quarters of the way around the depression, and ends in the cytoplasm. In place of a typical chrysophyte R1 rootlet, U. americana has a different array of microtubules attached to the F1 basal body which we have designated the descending rootlet (DR). This rootlet is a hairpin-shaped structure lying just below the surface of the cell; its longitudinal axis is predominantly parallel to the longitudinal axis of the cell. The DR resembles the bypassing rootlet which occurs in phaeophyte zoospores. Other chrysophytes may possess rootlets which are similar to the DR found in Uroglena.  相似文献   

16.
The three-dimensional structure of the flagellar apparatus in the dinoflagellate Oxyrrhis marina has been reinvestigated and found to consist of several previously unknown components and component combinations that appear strikingly similar to those of some gymnodinoid taxa. The flagellar apparatus of this dinoflagellate is asymmetric and extremely complex consisting of a longitudinal and a transverse basal body that gives rise to eight structurally different components. The only posteriorly directed component is the large microtubular root that consists of 45–50 microtubules at its origin and is attached proximally to a perpendicularly oriented striated fibrous component. Arising from each basal body, two striated fibrous roots with different periodicities extend to the cell's left. A single stranded microtubular root with associated electron dense material emanates from the transverse basal body and also extends to the cell's left. A striated fibrous connective arises from the longitudinal basal body and extends toward the cell's right ventral surface and terminates near the sub-thecal microtubular system. A compound root consisting of microtubules and electron dense material also originates from the longitudinal basal body and extends ventrally into the anterior region of the tentacle. Structural similarities between the parallel striated fibrous roots of Oxyrrhis and Polykrikos are discussed as are flagellar apparatus similarities among other gymnodinoid dinoflagellates. A diagrammatic reconstruction of the Oxyrrhis flagellar apparatus is also presented.  相似文献   

17.
The detailed structure of the flagellar apparatus has been determined in a small dinoflagellate of the genus Gymnodinium. Although diminutive, this dinoflagellate possesses a complex flagellar apparatus consisting of a posteriorly directed microtubular root, a transverse striated fibrous root, several striated fibrous connectives that attach the basal bodies to one another as well as to the different roots, and a conspicuous non-striated fibrous connective that directly links the posteriorly directded microtubular root with the extended lobe of the nucleus. This represents the second discovery of a nuclear connective linked to the flagellar apparatus in the Dinophyceae but is the first report to elucidate the spatial relationships of the connective with the flagellar apparatus and the cell. A detailed diagrammatic reconstruction is provided and the similarities between these flagellar apparatus features are compared with those known for other dinoflagellates. Additionally, the structure and displacement of the nuclear connective are compared with nuclear connectives described in other protists.  相似文献   

18.
Gymnodinium acidotum Nygaard is a freshwater dinoflagellate that is known to harbor a cryptomonad endosymbiont whose chloroplasls give the organism an overall blue-green color. The ultrastructure of G. acidotum was examined with particular attention being given to the three dimensional nature of the flagellar apparatus. The fiagellar apparatus is composed of two functional basal bodies that are slightly offset and lie at an angle of approximately 90° to one another. As in other dinoflagellates the transverse basal body is associated with a striated, fibrous root that extends from the proximal end of the basal body to the transverse flagellar opening. At least one microtubular root extends from the proximal end of the transverse basal body, and a multi-membered longitudinal microtubular root is associated with the longitudinal basal body. The most striking feature of the flagellar apparatus of G. acidotum is the large fibrous connective that extends from the region of the proximal ends of the basal bodies to the cingulum on the dorsal side of the cell. A similar structure has been reported from only one other dinoflagellate, Amphidinium cryophilum Wedemayer, Wilcox, and Graham. The presence of this structure as well as similarities in external morphology suggest thai these two species may be more closely related to each other than either is to other gymnodinioid taxa. The taxonomic importance of dinoflagellate flagellar apparatus components is discussed.  相似文献   

19.
The fine structure of the male and female gametes of Pseudobryopsis, particularly that of the flagellar apparatus, is compared with that of swarmers of other green algae. There is general similarity, with differences in detail, to the Ulvales and other green siphons that have been studied. The similarities include overlapping basal bodies, the capping plate type of connective between basal bodies, terminal caps, and system II fibrous roots (rhizoplasts). The capping plate of the female gamete differs from that in other green siphons and the Ulvales in form and in the presence of a faint striation. A diagram illustrating the actual arrangement of the components of the flagellar apparatus is given, along with a discussion of the fact that the mirror image of the true arrangement has been given in some reports on ulvaphycean algae.  相似文献   

20.
The three-dimensional structure of the flagellar apparatus in the gonyaulacoid dinoflagellate. Ceratium hirundinella var. furcoïdes (Schröder) Hub.-Pest. was determined using serial section electron microscopy. The flagellar apparatus is quite large and consists of several components. The two basal bodies nearly abut at their proximal ends and are separated by an angle of approximately 120° The broad longitudinal microtubular root extends from the cell's left edge of the longitudinal basal body and bends around the sulcal/cingular depression into the cell's left antapical horn. A transverse striated fibrous root is associated with the transverse basal body and a narrow electron dense extension is present along the anterior edge of the transverse basal body. This study revealed severa1 hitherto unreported fibrous components of the flagellar apparatus that link the various microtubular and fibrous components to themselves and to the two striated collars. A large striated fibrous connective links the two striated collars to one another. This fibrous connective is linked to another striated fibrous connective that originates from the longitudinal basal body and lies perpendicular to the longitudinal microtubular root. The readily identifiable and numerous components of the Ceratium flagellar apparatus are comparable to those of other dinoflagellates. The combined presence of well dpveloped striated collars, a striated collar connective, and a basal body angle of approximately 120° indicates that this flagellar apparatus is most like that described for Peridinioid dinoflagellates. Important similarities are also noticeable between this flagellar apparatus and that of Oxyrrhis marina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号